2818: Gcd

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 4436  Solved: 1957
[Submit][Status][Discuss]

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

1<=N<=10^7


uva上做过gcd(x,y)=1的题

gcd(x,y)=p ---> gcd(x/p,y/p)=1

每个质数做一遍行了

答案是欧拉函数的前缀和*2-质数的个数,因为(p,p)算一组

朴素的两个筛法写下来要5000ms

然后就学了一个新技能:欧拉筛法同时求欧拉函数

我们要证明:

若p是x的约数,则Φ(x*p)=Φ(x)*p.
若p不是x的约数,则Φ(x*p)=Φ(x)*(p-1).  

欧拉函数是一个积性函数,且phi(p)=p-1 p is prime

若f(n)为数论函数,且f(1)=1,对于互质的正整数p,q有f(p⋅q)=f(p)⋅f(q),则称其为积性函数

那么Φ(x*p)=Φ(x)*(p-1)

Φ(p^k)=p^k-p^(k-1)=(p-1)*p^(k-1)
证明:

令n=p^k,小于n的正整数数共有n-1即(p^k-1)个,其中不与p互质的数共[p^(k-1)-1]个(除以p然后下取整.....)
所以Φ(p^k)=(p^k-1)-(p^(k-1)-1)=p^k-p^(k-1) 得证。//定义

Φ(p^k)=(p-1)*p^(k-1)=(p-1)*p^(k-2)*p
Φ(p^(k-1))=(p-1)*p^(k-2)
所以当k>1时,Φ(p^k)=Φ(p^(k-1))*p

得证

复习欧拉筛法:对于任意一个合数,拆成最小质数*某个数字的形式,每个数字只会被筛选一次

2016的国家队论文里有一个语言描述比较好,复制不下来....

那么我们遇到一个数i,如果是素数phi[i]=i-1

然后在枚举i*p[j]时,phi[i]已经知道了,由以上两个式子就可以算出phi[i*p[j]]的值了

更一般的来说,就是因为线性筛的过程中得到了每个数的最小质因子,利用了积性函数的性质

【2016-12-22】上述直接观察也可以

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e7+;
int n;
bool vis[N];
int p[N],m=;
ll s[N],ans,phi[N];
void sieveprime(){
for(int i=;i<=n;i++){
if(!vis[i]) p[++m]=i;
for(int j=;j<=m&&i*p[j]<=n;j++){
vis[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
void sievephi(){
phi[]=;
for(int i=;i<=n;i++)if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(int i=;i<=n;i++) s[i]=s[i-]+phi[i];
}
int main(){
scanf("%d",&n);
sieveprime();
sievephi();
for(int i=;i<=m;i++) ans+=s[n/p[i]];
printf("%lld",ans*-m);
}

朴素

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e7+;
int n;
bool vis[N];
int p[N],m=;
ll s[N],ans,phi[N];
void sieve(){
phi[]=;
for(int i=;i<=n;i++){
if(!vis[i]){
p[++m]=i;
phi[i]=i-;
}
for(int j=;j<=m&&i*p[j]<=n;j++){
vis[i*p[j]]=;
if(i%p[j]==){
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
for(int i=;i<=n;i++) s[i]=s[i-]+phi[i];
}
int main(){
scanf("%d",&n);
sieve();
for(int i=;i<=m;i++) ans+=s[n/p[i]];
printf("%lld",ans*-m);
}

BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】的更多相关文章

  1. BZOJ 2818 Gcd(欧拉函数+质数筛选)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 9108  Solved: 4066 [Submit][Status][Discu ...

  2. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  3. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  4. Poj 2478-Farey Sequence 欧拉函数,素数,线性筛

    Farey Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14291   Accepted: 5647 D ...

  5. 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)

    洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...

  6. 欧拉函数(线性筛)(超好Dong)

    欧拉函数:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) . #include <bits/stdc++.h> using namespace std; cons ...

  7. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  8. Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛

    2749: [HAOI2012]外星人 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 568  Solved: 302[Submit][Status][ ...

  9. [bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛

    LCMSum bzoj-2226 Spoj-5971 题目大意:求$\sum\limits_{i=1}^nlcm(i,n)$ 注释:$1\le n\le 10^6$,$1\le cases \le 3 ...

随机推荐

  1. JavaScript权威设计--事件处理介绍(简要学习笔记十七)

    1.事件相关概念 事件类型:一个用来说明发生什么类型事件的字符串 事件目标:是发生的事件或与之相关的对象. 事件处理程序(事件监听程序):是处理货响应事件的函数. 事件对象:是与特定事件相关并且包含有 ...

  2. 前端学HTTP之摘要认证

    前面的话 上一篇介绍的基本认证便捷灵活,但极不安全.用户名和密码都是以明文形式传送的,也没有采取任何措施防止对报文的篡改.安全使用基本认证的唯一方式就是将其与SSL配合使用 摘要认证与基本认证兼容,但 ...

  3. Swift 必备开发库 (高级篇) (转)

    1.CryptoSwift swift加密库, 支持md5,sha1,sha224,sha256... github地址: https://github.com/krzyzanowskim/Crypt ...

  4. 时间复杂度分别为 O(n)和 O(1)的删除单链表结点的方法

    有一个单链表,提供了头指针和一个结点指针,设计一个函数,在 O(1)时间内删除该结点指针指向的结点. 众所周知,链表无法随机存储,只能从头到尾去遍历整个链表,遇到目标节点之后删除之,这是最常规的思路和 ...

  5. SharePoint2013 Set a custom application page as site welcome page

    本文主要介绍如何添加一个custom application page as site welcome page 1.首先创建一个sharepoint 2013 empty solution, add ...

  6. JSONP的诞生、原理及应用实例

    问题: 页面中有一个按钮,点击之后会更新网页中的一个盒子的内容. Ajax可以很容易的满足这种无须刷新整个页面就可以实现数据变换的需求. 但是,Ajax有一个缺点,就是他不允许跨域请求资源. 如果我的 ...

  7. 在项目中同时使用Objective-C和Swift

    苹果发布的Swift语言可以和之前的Objective-C语言同时存在于一个项目中. 可能有人会认为是同一个类文件中既可以有Objective-C也可以有Swift,这是不对的.同一个类文件或同一个代 ...

  8. 『.NET Core CLI工具文档』(九)dotnet-run

    说明:本文是个人翻译文章,由于个人水平有限,有不对的地方请大家帮忙更正. 原文:dotnet-run 翻译:dotnet-run 名称 dotnet-run -- 没有任何明确的编译或启动命令运行&q ...

  9. VS2015 Update2中有关cordova和xamarin安装的问题

    最近VS2015出了Update2,当然是第一时间进行了安装,中间过程曲折,反复安装卸载n次,也算是获得了一定的安装经验值.现在说一下经常出的问题. Update2里最吸引人的当然是跨平台开发的部分, ...

  10. Mac OS X搭建C#开发环境

    在Mac下想要用C#语言的话,首先得有个跨平台的.Net环境-Mono http://www.mono-project.com/ 有了Mono平台之后,还得有一个好工具:目前比较好的IDE是Xmari ...