BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 4436 Solved: 1957
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
1<=N<=10^7
uva上做过gcd(x,y)=1的题
gcd(x,y)=p ---> gcd(x/p,y/p)=1
每个质数做一遍行了
答案是欧拉函数的前缀和*2-质数的个数,因为(p,p)算一组
朴素的两个筛法写下来要5000ms
然后就学了一个新技能:欧拉筛法同时求欧拉函数
我们要证明:
若p是x的约数,则Φ(x*p)=Φ(x)*p.
若p不是x的约数,则Φ(x*p)=Φ(x)*(p-1).
欧拉函数是一个积性函数,且phi(p)=p-1 p is prime
若f(n)为数论函数,且f(1)=1,对于互质的正整数p,q有f(p⋅q)=f(p)⋅f(q),则称其为积性函数。
那么Φ(x*p)=Φ(x)*(p-1)
Φ(p^k)=p^k-p^(k-1)=(p-1)*p^(k-1)
证明:
令n=p^k,小于n的正整数数共有n-1即(p^k-1)个,其中不与p互质的数共[p^(k-1)-1]个(除以p然后下取整.....)
所以Φ(p^k)=(p^k-1)-(p^(k-1)-1)=p^k-p^(k-1) 得证。//定义
Φ(p^k)=(p-1)*p^(k-1)=(p-1)*p^(k-2)*p
Φ(p^(k-1))=(p-1)*p^(k-2)
所以当k>1时,Φ(p^k)=Φ(p^(k-1))*p
得证
复习欧拉筛法:对于任意一个合数,拆成最小质数*某个数字的形式,每个数字只会被筛选一次
2016的国家队论文里有一个语言描述比较好,复制不下来....
那么我们遇到一个数i,如果是素数phi[i]=i-1
然后在枚举i*p[j]时,phi[i]已经知道了,由以上两个式子就可以算出phi[i*p[j]]的值了
更一般的来说,就是因为线性筛的过程中得到了每个数的最小质因子,利用了积性函数的性质
【2016-12-22】上述直接观察也可以
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e7+;
int n;
bool vis[N];
int p[N],m=;
ll s[N],ans,phi[N];
void sieveprime(){
for(int i=;i<=n;i++){
if(!vis[i]) p[++m]=i;
for(int j=;j<=m&&i*p[j]<=n;j++){
vis[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
void sievephi(){
phi[]=;
for(int i=;i<=n;i++)if(!phi[i]){
for(int j=i;j<=n;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-);
}
}
for(int i=;i<=n;i++) s[i]=s[i-]+phi[i];
}
int main(){
scanf("%d",&n);
sieveprime();
sievephi();
for(int i=;i<=m;i++) ans+=s[n/p[i]];
printf("%lld",ans*-m);
}
朴素
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=1e7+;
int n;
bool vis[N];
int p[N],m=;
ll s[N],ans,phi[N];
void sieve(){
phi[]=;
for(int i=;i<=n;i++){
if(!vis[i]){
p[++m]=i;
phi[i]=i-;
}
for(int j=;j<=m&&i*p[j]<=n;j++){
vis[i*p[j]]=;
if(i%p[j]==){
phi[i*p[j]]=phi[i]*p[j];
break;
}
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
for(int i=;i<=n;i++) s[i]=s[i-]+phi[i];
}
int main(){
scanf("%d",&n);
sieve();
for(int i=;i<=m;i++) ans+=s[n/p[i]];
printf("%lld",ans*-m);
}
BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】的更多相关文章
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- Poj 2478-Farey Sequence 欧拉函数,素数,线性筛
Farey Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14291 Accepted: 5647 D ...
- 洛谷UVA12995 Farey Sequence(欧拉函数,线性筛)
洛谷题目传送门 分数其实就是一个幌子,实际上就是求互质数对的个数(除开一个特例\((1,1)\)).因为保证了\(a<b\),所以我们把要求的东西拆开看,不就是\(\sum_{i=2}^n\ph ...
- 欧拉函数(线性筛)(超好Dong)
欧拉函数:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) . #include <bits/stdc++.h> using namespace std; cons ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- Bzoj 2749: [HAOI2012]外星人 欧拉函数,数论,线性筛
2749: [HAOI2012]外星人 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 568 Solved: 302[Submit][Status][ ...
- [bzoj2226][Spoj5971]LCMSum_欧拉函数_线性筛
LCMSum bzoj-2226 Spoj-5971 题目大意:求$\sum\limits_{i=1}^nlcm(i,n)$ 注释:$1\le n\le 10^6$,$1\le cases \le 3 ...
随机推荐
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
- 1元搭建自己的云服务器&解析域名
最近在学做微信开发,没有自己的域名和服务器就不得不寄人篱下,索性自己就到云主机上搭建了个服务器,但是水平有限弄了一个下午~~有自己的域名和服务器的好处相信不用我多说了.比如日后可以有自己域名的个性博客 ...
- JSONP的诞生、原理及应用实例
问题: 页面中有一个按钮,点击之后会更新网页中的一个盒子的内容. Ajax可以很容易的满足这种无须刷新整个页面就可以实现数据变换的需求. 但是,Ajax有一个缺点,就是他不允许跨域请求资源. 如果我的 ...
- JavaScript 跨域漫游
前言: 最近在公司做了几个项目都涉及到了iframe,也就是在这些iframe多次嵌套的项目中,我发现之前对iframe的认识还是比较不足的,所以就静下心来,好好整理总结了iframe的相关知识:&l ...
- jquery动态生成的元素添加事件的方法
动态生成的元素如果要添加事件,要写成 $(document).on("click", "#txtName", function() { alert(this.v ...
- 配置 EPEL yum 源
当我们在linux上, 使用yum 安装包时,报错如下: Loaded plugins: product-id, refresh-packagekit, security, subscription- ...
- Linux服务器技术收集
如何说服运维选择 Debian/Ubuntu 而不是 CentOS? 服务器操作系统应该选择 Debian/Ubuntu 还是 CentOS? HHVM 是如何提升 PHP 性能的?
- Yii2.x 互斥锁Mutex-类图
- 记录一次bug解决过程:eclipse Installed JREs 配置引出的问题
一 总结 eclipse Installed JREs 配置引出的问题:编译以来JDK,不是JRE spring boot内嵌tomcat运行程序,tomcat:run 二 Bug描述:eclipse ...
- Oracle Sales Cloud:报告和分析(BIEE)小细节1——创建双提示并建立关联(例如,部门和子部门提示)
Oracle Sales Cloud(Oracle 销售云)是一套基于Oracle云端的客户商机管理系统,通过提供丰富的功能来帮助提高销售效率,更好地去了解客户,发现和追踪商机,为最终的销售成交 (d ...