poj2976(01分数规划)
poj2976
题意
给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b}*100 $)最大。
分析
设 \(l=\frac{\sum a}{\sum b}\),我们要求使得 l 最大,构造新函数 \(F()={\sum a}-l*{\sum b}\),设\(D()=a-l*b\),显然 F() 是随 l 增大单调递减的,如果对于某个 l 使得 F() > 0 ,
则有 \(\frac{\sum a}{\sum b}>l\),那么我们可以知道此时存在比l更优的值(我们要 l 尽可能大);当 F() = 0 时,这个 l 即为所求值;当 F() < 0 时,无意义,此时的 l 根本取不到。
那么 F() 函数的功能是让我们可以不断逼近答案(即告诉我们后面有更优的值),如果我们现在选定了一个 l ,计算出 D 数组,从大到小选 n - k 个,这样使 F() 最大(F()越大,那么告诉我们后面存在更大的 l )。可以二分 l 当 F(l) >= 0 时,l = mid,否则,r = mid。
code
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 1e3 + 10;
const double INF = 1e15;
int n, k;
int a[MAXN], b[MAXN];
double d[MAXN];
int work(double rate) {
for(int i = 0; i < n; i++) {
d[i] = a[i] - rate * b[i];
}
sort(d, d + n);
double F = 0;
for(int i = n - 1; i >= k; i--) {
F += d[i];
}
return F >= 0;
}
double solve() {
double l = 0, r = 1, mid = 0;
while(r - l > 1e-5) {
mid = (l + r) / 2;
if(work(mid)) l = mid;
else r = mid;
}
return mid * 100;
}
int main() {
while(cin >> n >> k && (n + k)) {
for(int i = 0; i < n; i++) {
cin >> a[i];
}
for(int i = 0; i < n; i++) {
cin >> b[i];
}
printf("%.0f\n", solve());
}
return 0;
}
poj2976(01分数规划)的更多相关文章
- Dropping tests [POJ2976] [01分数规划]
Description 今年有 n 场 ACM-ICPC 竞赛,小明每场都有资格参加.第 i 场竞赛共有 b[i] 道题.小明预测第 i场他能做出 a[i] 道题.为了让自己看着更“大佬”一些,小明想 ...
- poj2976(01分数规划)
poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...
- [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)
题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...
- POJ2976:Dropping tests(01分数规划入门)
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cum ...
- [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环
01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...
- POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]
Sightseeing Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9703 Accepted: 3299 ...
- ZOJ 2676 Network Wars ★(最小割算法介绍 && 01分数规划)
[题意]给出一个带权无向图,求割集,且割集的平均边权最小. [分析] 先尝试着用更一般的形式重新叙述本问题.设向量w表示边的权值,令向量c=(1, 1, 1, --, 1)表示选边的代价,于是原问题等 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- 【Earthquake, 2001 Open 】 0-1 分数规划
71 奶牛施工队一场地震把约翰家园摧毁了,坚强的约翰决心重建家园.约翰已经修复了 N 个牧场,他需要再修复一些道路把它们连接起来.碰巧的是,奶牛们最近也成立了一个工程队,专门从事道路修复.而然,奶牛 ...
随机推荐
- MySQL之数据类型(常用)
MySQL-data_type数据类型 1.查看数据类型 mysql> help data type //通过help对数据进行查看,以及使用的方法 2.MySQL常见的数据类型 整数in ...
- AOP中的ASPECTJ
一.准备 1.架包 2.配置文件 二.注解的形式 UserDao.java package cn.itcast.spring.aspectj.annocation; public class User ...
- [Linux] PHP程序员玩转Linux系列-telnet轻松使用邮箱
1.PHP程序员玩转Linux系列-怎么安装使用CentOS 2.PHP程序员玩转Linux系列-lnmp环境的搭建 3.PHP程序员玩转Linux系列-搭建FTP代码开发环境 4.PHP程序员玩转L ...
- Extjs6(二)——用extjs6.0写一个系统登录及注销
本文基于ext-6.0.0 一.写login页 1.在view文件夹中创建login文件夹,在login中创建文件login.js和loginController.js(login.js放在class ...
- java spring mvc 全注解
本人苦逼学生一枚,马上就要毕业,面临找工作,实在是不想离开学校.在老师的教导下学习了spring mvc ,配置文件实在繁琐,因此网上百度学习了spring mvc 全注解方式完成spring的装配工 ...
- (知识点)JavaScript闭包
下面是我对闭包的理解:(把他们整理出来,整理的过程也是在梳理) 1.首先,在理解闭包之前: 我们首先应该清楚下作用域和作用域链 作用域:每个函数定义时创建时自己的环境即作用域 作用域链:函数内可访问自 ...
- 腾讯QQAndroid API调用实例(QQ分享无需登录)
腾讯QQAndroid API调用实例(QQ分享无需登录) 主要分为两个步骤: 配置Androidmanifest.xml 修改activity里边代码 具体修改如下: 1.Activity代 ...
- 多源最短路Floyd 算法————matlab实现
弗洛伊德(Floyd)算法是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计 ...
- SMP-1
项目:该项目是用web做一个捐款的管理系统. 目标:可以记录接受捐款和资助捐款的信息,可以查询捐款等. 计划时间:2016-01-01至2016-01-15 实际用时:2016-01-08至2016- ...
- 谷歌统计使用代码部署和事件API使用
谷歌统计代码部署和API使用 1.注册谷歌账号 要使用GA,必需先成为GOOGLE的注册用户,如果没有请去注册.当然,你有GMAIL邮箱就可以.邮箱就是帐户名. 2.开启Google Analytic ...