描述

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。

题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

对于30%的数据,L <= 10000;

对于全部的数据,L <= 10^9。

格式

输入格式

输入的第一行有一个正整数L(1 <= L <= 10^9),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1 <= S <= T <= 10,1 <= M <= 100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

输出格式

输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。

样例1

样例输入1

10

2 3 5

2 3 5 6 7

样例输出1

2

限制

1s

来源

NOIp2005 第二题

题解

根据题目意思可以发现这是一道动态规划的问题。并且我们可以很快地列出他的状态转移方程如下:

f[i] = min{f[i-j]}+a[i], (s<=j<=t)

其中:

f[i]表示到达第i点位置最少要踩到的石头数;

a[i]表示第i点位置是否有石子,有则a[i]为1,否则a[i]为0。

但是这样的话时间复杂度达到了O(L*T),会超时。

这个时候我们回去考虑是否能够压缩一下数据,比如说L的大小。

我们需要用到下面这个定理:

对于公式

P*x+(P+1)*y=Q

其中x,y是未知数,P是跳跃的距离,P+1也是跳跃的距离,对于任意Q,Q>=P(P-1), x,y一定存在正整数解,换句话说当两个石子之间的距离大于等于T(T-1)时,中间有相当大的距离是每个点都可以跳到的,因为没有石子,所以对答案没有贡献,可以取模(%90)

这样我们就成功的把很多没有用到的状态压缩了。这就是所谓的状态压缩DP。

优化后的代码如下:

#include <iostream>
#include <algorithm>
using namespace std;
#define inf (1<<29) int l, s, t, m, f[10010], a[10010], p[110]; int main()
{
cin >> l >> s >> t >> m;
for (int i = 0; i < m; i ++)
cin >> p[i];
if (s == t)
{
int res = 0;
for (int i = 0; i < m; i ++)
if (p[i] % s == 0)
res ++;
cout << res << endl;
return 0;
}
sort(p, p + m);
p[m] = l;
p[0] %= 90;
for (int i = 1; i <= m; i ++)
p[i] = p[i-1] + (p[i] - p[i-1]) % 90;
for (int i = 0; i < m; i ++)
a[p[i]] = 1;
f[0] = 0;
for (int i = 1; i <= p[m]; i ++)
f[i] = inf;
for (int i = 1; i <= p[m]; i ++)
for (int j = s; j <= t; j ++)
if (i - j >= 0)
f[i] = min(f[i], f[i-j]+a[i]);
cout << f[p[m]] << endl;
return 0;
}

参考

Vijos 1002 过河 状态压缩DP的更多相关文章

  1. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  2. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  3. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  4. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  5. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  6. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  7. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

  8. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  9. HDU 1074 (状态压缩DP)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...

随机推荐

  1. 我来说说XML文件中的xmlns、xmlns:xsi和xsi:schemaLocation的具体含义

      文章摘自:https://yq.aliyun.com/articles/40353               http://www.cnblogs.com/zhao1949/p/5652167. ...

  2. 第 16 章 MySQL Cluster

    前言: MySQL Cluster 是一个基于 NDB Cluster 存储引擎的完整的分布式数据库系统.不仅仅具有高可用性,而且可以自动切分数据,冗余数据等高级功能.和 Oracle Real Cl ...

  3. Android Weekly Notes Issue #258

    Android Weekly Issue #258 May 21st, 2017 Android Weekly Issue #258 本期内容: 围绕着Google I/O的热潮, 本周的posts除 ...

  4. kafka 0.10.2 cetos6.5 集群部署

    安装 zookeeper http://www.cnblogs.com/xiaojf/p/6572351.html安装 scala http://www.cnblogs.com/xiaojf/p/65 ...

  5. #417 Div2 C

    #417 Div2 C 题意 给出 n 个货物的基础价格和钱 S ,每个货物的最终价格要加上 购买商品总数 * 商品在原来序列中的序号. 问最多能买多少件,且花费最小. 分析 二分购买商品数量,每次判 ...

  6. 【Python中if __name__ == '__main__': 的解析】

    在很多Python代码中,在代码的最下方会看到  if __name__ == '__main__':,这段代码到底有什么用呢? 在理解这个语句的作用前,需要知道的是,一般的Python文件后缀为.p ...

  7. 快速上手 Kotlin 的 11 招

    本文转载自 Kotlin 公众号(KotlinX) 作者:bennyhuo 最近经常会收到一些 "用 Kotlin 怎么写" 的问题,作为有经验的程序员,我们已经掌握了一门或者多门 ...

  8. eclipse汉化教程,新手神器

    网盘下载地址:http://pan.baidu.com/s/1i5ed6ZF 下载汉化包 将汉化包里的两个文件存放到eclipse安装目录中的dropins文件夹中 重启eclipse 汉化成功

  9. 基于Petri网的工作流分析和移植

    基于Petri网的工作流分析和移植 一.前言 在实际应用场景,包括PEC的订单流程从下订单到订单派送一直到订单完成都是按照一系列预先规定好的工作流策略进行的. 通常情况下如果是采用面向过程的编程方法, ...

  10. C++汉诺塔递归实现

    程序背景: 汉诺塔(Tower of Hanoi)又称河内塔,问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命 ...