Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Description
给定n*n的矩阵A,求A^k
Input
第一行,n,k
第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素
Output
输出A^k
共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7
Sample Input
2 1
1 1
1 1
Sample Output
1 1
1 1
Http
Luogu:https://www.luogu.org/problem/show?pid=3390
Source
矩阵乘法,快速幂
解决思路
关于矩阵和矩阵乘法的内容可以到我的这一篇博客查看。
这一题需要注意的就是初始矩阵的赋值,具体请看代码。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
const int maxN=201;
const ll Mod=1000000007;
const ll inf=2147483647;
int n;
class Matrix
{
public:
ll M[maxN][maxN];
Matrix(int x)
{
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
M[i][j]=x;
}
Matrix(ll Arr[maxN][maxN])
{
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
M[i][j]=Arr[i][j];
}
void print()
{
for (int i=0;i<n;i++)
{
for (int j=0;j<n;j++)
cout<<M[i][j]<<' ';
cout<<endl;
}
}
};
Matrix operator * (Matrix A,Matrix B)
{
Matrix Ans(0);
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
for (int k=0;k<n;k++)
Ans.M[i][j]=(Ans.M[i][j]+A.M[i][k]*B.M[k][j]%Mod)%Mod;
return Ans;
}
ll Arr[maxN][maxN];
ll read();
void Pow(ll Po);
int main()
{
n=read();
ll Po=read();
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
Arr[i][j]=read();
Pow(Po-1);//注意,这里为什么要-1呢,因为我们知道a^1是a,对于矩阵来说就是A^1是A,所以在传进去的时候先-1(相当于已经进行了一次操作),而若Po==1,则在Pow(Po-1)中不会执行循环,此时也正好是矩阵A(仔细揣摩一下)
return 0;
}
ll read()
{
ll x=0;
ll k=1;
char ch=getchar();
while (((ch>'9')||(ch<'0'))&&(ch!='-'))
ch=getchar();
if (ch=='-')
{
k=-1;
ch=getchar();
}
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return x*k;
}
void Pow(ll P)
{
Matrix A(Arr);
Matrix B(Arr);
while (P!=0)
{
if (P&1)
A=A*B;
B=B*B;
P=P>>1;
}
A.print();
return;
}
Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)的更多相关文章
- 乘方快速幂 OR 乘法快速幂
关于快速幂这个算法,已经不想多说,很早也就会了这个算法,但是原来一直靠着模板云里雾里的,最近重新学习,发现忽视了一个重要的问题,就是若取模的数大于int型,即若为__int64的时候应该怎么办,这样就 ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- 整数快速乘法/快速幂+矩阵快速幂+Strassen算法
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩 ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法
题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...
- 快速幂&&矩阵快速幂
快速幂 题目链接:https://www.luogu.org/problemnew/show/P1226 快速幂用了二分的思想,即将\(a^{b}\)的指数b不断分解成二进制的形式,然后相乘累加起来, ...
- 快速幂 & 矩阵快速幂
目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...
随机推荐
- 用c++实现高精度加法
c++实习高精度加法 最近遇到一个c++实现高精度加法的问题,高精度问题往往十复杂但发现其中的规律后发现并没有那么复杂,这里我实现了一个整数的高精度加法,主要需要注意以下几点: 1:将所需输入的数据以 ...
- Js实现京东无延迟菜单效果(demo)
一个端午节,外面人山人海,又那么热,我认为宅在家里看看慕课网,充实自己来的实际... 这是一个js实现京东无延迟菜单效果,感觉很好,分享给大家... 1.开发基本的菜单结构 2.开发普通的二级菜单效果 ...
- 简单VR照片 使用陀螺仪、姿态角(Roll、Pitch、Yaw )、四元数
最近在做一个类似VR照片的demo,跟全景图片也很像,只是VR照片与全景720度显示,我只做了180度.但我发现他们实现的原理有一丝相似,希望可以给一些想入行AR.VR的朋友一些提示吧. ...
- JVM类加载以及执行的实战
前几篇文章主要是去理解JVM类加载的原理和应用,这一回讲一个可以自己动手的例子,希望能从头到尾的理解类加载以及执行的整个过程. 这个例子是从周志明的著作<深入理解Java虚拟机>第9章里抄 ...
- java将类和函数封装成jar,然后在别的项目中使用这个jar包
本来想用idea安装的,不过用maven生成后发现jar有20,30M肯定不对,后来还是用eclipse生成了,方便很多 环境: eclipse luna,jdk1.8_112 1.生成jar包,首先 ...
- Android WebView 不支持 H5 input type="file" 解决方法
最近因为赶项目进度,因此将本来要用原生控件实现的界面,自己做了H5并嵌入webview中.发现点击H5中 标签 不能打开android资源管理器. 通过网络搜索发现是因为 android webvie ...
- php+mysql 除了设置主键防止表单提交内容重复外的另一种方法
感觉好久没有更新博客了,一直在做网站及后台,也没有遇到让我觉得可以整理的内容,之前做的一个系统,已经完成了,后来客户又要求加一个功能,大概就是表单提交的时候,约束有一项不能和以前的内容重复,如图 比如 ...
- [转]tomcat部署
转载博客原文地址: http://www.cnblogs.com/xing901022/p/4463896.html 阅读目录 介绍 静态部署——在tomcat启动时部署 动态部署——在tomcat ...
- Hadoop SSH+IP、SSH+别名 免密登录配置
1.为什么要进行 SSH 无密码验证配置? Hadoop运行过程中需要管理远端Hadoop守护进程,在Hadoop启动以后,NameNode是通过SSH(Secure Shell)来启动和停止各个Da ...
- JavaScript面向对象轻松入门之抽象(demo by ES5、ES6、TypeScript)
抽象的概念 狭义的抽象,也就是代码里的抽象,就是把一些相关联的业务逻辑分离成属性和方法(行为),这些属性和方法就可以构成一个对象. 这种抽象是为了把难以理解的代码归纳成与现实世界关联的概念,比如小狗这 ...