1.http://htk.eng.cam.ac.uk/download.shtml

官网下载HTK source code以及HDecode

2.分别解压HTK-3.5.beta-2.tar.gz、HDecode-3.5.beta-1.tar.gz,将其合并到一个文件夹htk中

3.查看htk/README

决定要安装的类型后,

根据描述安装即可

HTK 3.5 comes with three sets of Makefiles enabling compilation for:

1. CPU (standard)
2. CPU using MKL (Intel Math Kernel library)
3. NVIDIA GPUs (Graphic Processing Unit) using the NVIDIA CUDA compiler NVCC

These alternative Makefiles are located in each of the following directories:

HTKLib, HLMLib, HTKTools, HLMTools

Examine the MakefileCPU, MakefileMKL and  MakefileNVCC
files in each of these directories and change the default
locations of CPU/GPU compilers and libraries to match the
locations on the system for which HTK 3.5 is to be installed.

In order to compile either the standard CPU version, or
the CPU version with MKL support or GPU version execute one of the following

1. make -f MakefileCPU all
2. make -f MakefileMKL all
3. make -f MakefileNVCC all

in turn in each of HTKLib, HLMLib, HTKTools and HLMTools.
Having compiled one of the branches (CPU/MKL/NVCC), the
relevant HTK tools can be installed executing one of the following

1. make -f MakefileCPU install
2. make -f MakefileMKL install
3. make -f MakefileNVCC install

commands in both the HTKTools and HLMTools directories. By default HTK
tools will be installed in bin.cpu, bin.mkl or bin.gpu depending
on the branch.

Prior to compiling a new branch it is important to clean the distribution

1. make -f MakefileCPU clean
2. make -f MakefileMKL clean
3. make -f MakefileNVCC clean

HDecode
=======

If you are also building HDecode (available from the HTK website, under a
different licence from HTK), you will firstly need to unpack the HDecode
source code (in the same directory in which you unpacked the HTK
sources). Then follow the steps above for first building HTK, and then execute
the following command in HTKLVRec directory:

1. make -f MakefileCPU all
2. make -f MakefileCPU install

or

1. make -f MakefileMKL all
2. make -f MakefileMKL install

or

1. make -f MakefileNVCC all
2. make -f MakefileNVCC install

depending on whether HTK is compiled for CPU, CPU with MKL support or GPU.

4.测试是否安装正确时注意

得先将htk/bin.cpu添加到环境变量中    ------我安装的是cpu standard类型的
命令行输入

vim ~/.bashrc

在最后一行添加

export PATH=$PATH:/home/lc/下载/htk/bin.cpu

然后回到命令行,输入

source .bashrc
使得改变生效

然后根据README里描述继续就行

Testing the Installation
========================
As an initial test of the installation please run the HTK demonstration
using the configuration file samples/HTKDemo/configs/monPlainM1S1.dcf.
There is a README file in the samples/HTKDemo directory that explains
the operation of the demonstration in detail but, in short, you need
to run the demonstration script passing it the configuration file
samples/HTKDemo/configs/monPlainM1S1.dcf as input.

测试截图

HTK 3.5 comes with three sets of Makefiles enabling compilation for:

1. CPU (standard)
2. CPU using MKL (Intel Math Kernel library)
3. NVIDIA GPUs (Graphic Processing Unit) using the NVIDIA CUDA compiler NVCC

These alternative Makefiles are located in each of the following directories:

HTKLib, HLMLib, HTKTools, HLMTools

Examine the MakefileCPU, MakefileMKL and  MakefileNVCC
files in each of these directories and change the default
locations of CPU/GPU compilers and libraries to match the
locations on the system for which HTK 3.5 is to be installed.

In order to compile either the standard CPU version, or
the CPU version with MKL support or GPU version execute one of the following

1. make -f MakefileCPU all
2. make -f MakefileMKL all
3. make -f MakefileNVCC all

in turn in each of HTKLib, HLMLib, HTKTools and HLMTools.
Having compiled one of the branches (CPU/MKL/NVCC), the
relevant HTK tools can be installed executing one of the following

1. make -f MakefileCPU install
2. make -f MakefileMKL install
3. make -f MakefileNVCC install

commands in both the HTKTools and HLMTools directories. By default HTK
tools will be installed in bin.cpu, bin.mkl or bin.gpu depending
on the branch.

Prior to compiling a new branch it is important to clean the distribution

1. make -f MakefileCPU clean
2. make -f MakefileMKL clean
3. make -f MakefileNVCC clean

HDecode
=======

If you are also building HDecode (available from the HTK website, under a
different licence from HTK), you will firstly need to unpack the HDecode
source code (in the same directory in which you unpacked the HTK
sources). Then follow the steps above for first building HTK, and then execute
the following command in HTKLVRec directory:

1. make -f MakefileCPU all
2. make -f MakefileCPU install

or

1. make -f MakefileMKL all
2. make -f MakefileMKL install

or

1. make -f MakefileNVCC all
2. make -f MakefileNVCC install

depending on whether HTK is compiled for CPU, CPU with MKL support or GPU.

Compiling & Installing HTK under Windows
========================================
HTK 3.5 has not yet been tested under Windows.

Testing the Installation
========================
As an initial test of the installation please run the HTK demonstration
using the configuration file samples/HTKDemo/configs/monPlainM1S1.dcf.
There is a README file in the samples/HTKDemo directory that explains
the operation of the demonstration in detail but, in short, you need
to run the demonstration script passing it the configuration file
samples/HTKDemo/configs/monPlainM1S1.dcf as input.
To test the language modelling tools you should follow the tutorial
in the HTK book, using the files in the LMTutorial/ directory.

In addition to basic testing of the HTK installation, it is also possible
to build several HTK systems for the Resource Management (RM) task.
These systems range in complexity from simpler Gaussian mixture model
based HMMs to more complex artificial neural network based systems.
The RM recipe is located in samples/RMHTK directory and is documented
as a part of tutorial chapter in the HTK book.

ubuntu 14.04 64位安装HTK3.5的更多相关文章

  1. ubuntu 14.04 64位安装iNodeClient

    ubuntu 14.04 64位安装iNodeClieng(华三校园客服端) http://pan.baidu.com/s/12dpxk ubuntu 14.04 64bit Install H3C ...

  2. ubuntu 14.04 64位安装bigbluebutton

    BigBlueButton 是一个使用 ActionScript 开发的在线视频会议系统或者是远程教育系统,主要功能包括在线PPT演示.视频交流和语音交流,还可以进行文字交流.举手发言等功能,特别适合 ...

  3. Ubuntu 14.04 64位安装Android Studio 和 genymotion (下)

    接上一篇,上回书说到,我们可以进android studio的编辑器了.感觉不错.挺好的,先不说genymotion,先看看你的android项目有没有r文件,项目有没有错误? 如果没有问题的话,下面 ...

  4. Ubuntu 14.04 64位安装Android Studio 和 genymotion (上)

    先说下,Ubuntu 上安装Android Studio真是一路坑阿,一路坑阿,加上天  朝 防火墙挡着,折腾了快一天才弄好阿 找了n多教程,md不是抄的就是转的,而且都没说清楚具体咋装阿,一个图一个 ...

  5. ubuntu 14.04 64位 安装Opencv3.1.0 (包含opencv_contrib模块)

    写在前边: 据官方说法,目前还不是太稳定的算法模块都在opencv_contrib里边,由于不稳定,所以不能在release版本里发行,只有在稳定以后才会放进release里边.但是这里边有很多我们经 ...

  6. Go在Ubuntu 14.04 64位上的安装过程

    1. 从 https://golang.org/dl/  或  https://studygolang.com/dl 下载最新的发布版本go1.10即go1.10.linux-amd64.tar.gz ...

  7. Ubuntu 14.04 64位上安装wps office软件(转http://m.blog.csdn.net/blog/yhc13429826359/24179933)

    废话少说,只给出方法供各位参考!wps for Linux版本已经有两三年没有大的动作,当然其他平台,比如windows,Android,ios上的wps效果还是很赞的说. 下面是我成功安装的步骤: ...

  8. Ubuntu 14.04 64位上安装wps office软件

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/tao_627/article/details/24179933 废话少说,仅仅给出方法供各位參考! ...

  9. Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡) ------本内容是长时间的积累,有时间再详细整理

    (后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...

随机推荐

  1. HTML5 File接口(在web页面上使用文件)

    File接口提供了与文件相关的信息,并且运行JavaScript在web页面上去访问文件中的内容. File对象来自于用户使用input标签选择文件返回的FileList对象,来自于拖放操作的Data ...

  2. jQuery的动态绑定事件的应用

    注意:bind()的事件绑定是只对当前页面选中的元素有效.如果你想对动态创建的元素bind()事件,是没有办法达到效果的 <script src="jquery-1.11.2.min. ...

  3. oracle lag与lead分析函数简介

    lag与lead函数是跟偏移量相关的两个分析函数,通过这两个函数我们可以取到当前行列的偏移N行列的值 lag可以看着是正的向上的偏移 lead可以认为负的向下的偏移 具体我们来看几个例子: 我们先看下 ...

  4. KoaHub平台基于Node.js开发的Koa router路由插件代码信息详情

    koa-router Router middleware for koa. Provides RESTful resource routing. koa-router       Router mid ...

  5. 1753: [Usaco2005 qua]Who's in the Middle

    1753: [Usaco2005 qua]Who's in the Middle Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 290  Solved:  ...

  6. loadrunner:Auto Correlate自动定位瓶颈

    Auto correlate可以根据数据趋势,自动分析出可能影响目标性能的数据项,通过它可以很方便地找出哪些数据之间有明显的相互依赖性. 下面以分析影响平均响应时间的windows资源为例,讲解Aut ...

  7. .net core 部署 centos7 初试

    最近抽时间搞搞.net core,这方面已经有很多先驱人物贡献了好多文章了,今天沿着前辈们走的坑自己再淌一下...... 注意开头说的使用centos7,我电脑之前全是6.几的版本,然后就一头雾水的搞 ...

  8. Fibonacci数列前n项值的输出(运用递归算法)

    1.斐波那契数列: 又称黄金分割数列,指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 在数学上,斐波纳契数列以如下被以递归的方法 ...

  9. warning: in-class initialization of non-static data member is a C++11 extension [-Wc++11-extensions]

    struct test{int a=1111111; }test; vincentdeMacBook-Air:datasturte vincent$ g++ struct.cpp -o structp ...

  10. cuda编程学习1——hello world!

    将c程序最简单的hello world用cuda编写在GPU上执行,以下为代码: #include<iostream>using namespace std;__global__ void ...