Introduction to Deep Learning Algorithms

See the following article for a recent survey of deep learning:

Yoshua Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine Learning, 2(1), 2009

Depth

The computations involved in producing an output from an input can be represented by a flow graph: a flow graph is a graph representing a computation, in which each node represents an elementary computation and a value (the result of the computation, applied to the values at the children of that node). Consider the set of computations allowed in each node and possible graph structures and this defines a family of functions. Input nodes have no children. Output nodes have no parents.

The flow graph for the expression  could be represented by a graph with two input nodes  and , one node for the division  taking  and  as input (i.e. as children), one node for the square (taking only  as input), one node for the addition (whose value would be  and taking as input the nodes  and , and finally one output node computing the sinus, and with a single input coming from the addition node.

A particular property of such flow graphs is depth: the length of the longest path from an input to an output.

Traditional feedforward neural networks can be considered to have depth equal to the number of layers (i.e. the number of hidden layers plus 1, for the output layer). Support Vector Machines (SVMs) have depth 2 (one for the kernel outputs or for the feature space, and one for the linear combination producing the output).

Motivations for Deep Architectures

The main motivations for studying learning algorithms for deep architectures are the following:

Insufficient depth can hurt

Depth 2 is enough in many cases (e.g. logical gates, formal [threshold] neurons, sigmoid-neurons, Radial Basis Function [RBF] units like in SVMs) to represent any function with a given target accuracy. But this may come with a price: that the required number of nodes in the graph (i.e. computations, and also number of parameters, when we try to learn the function) may grow very large. Theoretical results showed that there exist function families for which in fact the required number of nodes may grow exponentially with the input size. This has been shown for logical gates, formal neurons, and RBF units. In the latter case Hastad has shown families of functions which can be efficiently (compactly) represented with  nodes (for  inputs) when depth is , but for which an exponential number () of nodes is needed if depth is restricted to .

One can see a deep architecture as a kind of factorization. Most randomly chosen functions can’t be represented efficiently, whether with a deep or a shallow architecture. But many that can be represented efficiently with a deep architecture cannot be represented efficiently with a shallow one (see the polynomials example in the Bengio survey paper). The existence of a compact and deep representation indicates that some kind of structure exists in the underlying function to be represented. If there was no structure whatsoever, it would not be possible to generalize well.

The brain has a deep architecture

For example, the visual cortex is well-studied and shows a sequence of areas each of which contains a representation of the input, and signals flow from one to the next (there are also skip connections and at some level parallel paths, so the picture is more complex). Each level of this feature hierarchy represents the input at a different level of abstraction, with more abstract features further up in the hierarchy, defined in terms of the lower-level ones.

Note that representations in the brain are in between dense distributed and purely local: they are sparse: about 1% of neurons are active simultaneously in the brain. Given the huge number of neurons, this is still a very efficient (exponentially efficient) representation.

Cognitive processes seem deep

  • Humans organize their ideas and concepts hierarchically.
  • Humans first learn simpler concepts and then compose them to represent more abstract ones.
  • Engineers break-up solutions into multiple levels of abstraction and processing

It would be nice to learn / discover these concepts (knowledge engineering failed because of poor introspection?). Introspection of linguistically expressible concepts also suggests a sparse representation: only a small fraction of all possible words/concepts are applicable to a particular input (say a visual scene).

Breakthrough in Learning Deep Architectures

Before 2006, attempts at training deep architectures failed: training a deep supervised feedforward neural network tends to yield worse results (both in training and in test error) then shallow ones (with 1 or 2 hidden layers).

Three papers changed that in 2006, spearheaded by Hinton’s revolutionary work on Deep Belief Networks (DBNs):

The following key principles are found in all three papers:

  • Unsupervised learning of representations is used to (pre-)train each layer.
  • Unsupervised training of one layer at a time, on top of the previously trained ones. The representation learned at each level is the input for the next layer.
  • Use supervised training to fine-tune all the layers (in addition to one or more additional layers that are dedicated to producing predictions).

The DBNs use RBMs for unsupervised learning of representation at each layer. The Bengio et al paper explores and compares RBMs andauto-encoders (neural network that predicts its input, through a bottleneck internal layer of representation). The Ranzato et al paper uses sparse auto-encoder (which is similar to sparse coding) in the context of a convolutional architecture. Auto-encoders and convolutional architectures will be covered later in the course.

Since 2006, a plethora of other papers on the subject of deep learning has been published, some of them exploiting other principles to guide training of intermediate representations. See Learning Deep Architectures for AI for a survey.

Introduction to Deep Learning Algorithms的更多相关文章

  1. A beginner’s introduction to Deep Learning

    A beginner’s introduction to Deep Learning I am Samvita from the Business Team of HyperVerge. I join ...

  2. 李宏毅机器学习笔记4:Brief Introduction of Deep Learning、Backpropagation(后向传播算法)

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

  3. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 2、10个测验题

    1.What does the analogy “AI is the new electricity” refer to?  (B) A. Through the “smart grid”, AI i ...

  4. 【DeepLearning学习笔记】Coursera课程《Neural Networks and Deep Learning》——Week1 Introduction to deep learning课堂笔记

    Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learn ...

  5. [C1W1] Neural Networks and Deep Learning - Introduction to Deep Learning

    第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以 ...

  6. Coursera, Deep Learning 1, Neural Networks and Deep Learning - week1, Introduction to deep learning

    整个deep learing 系列课程主要包括哪些内容 Intro to Deep learning

  7. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 0、学习目标

    1. Understand the major trends driving the rise of deep learning.2. Be able to explain how deep lear ...

  8. 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题

    Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...

  9. [1天搞懂深度学习] 读书笔记 lecture I:Introduction of deep learning

    - 通常机器学习,目的是,找到一个函数,针对任何输入:语音,图片,文字,都能够自动输出正确的结果. - 而我们可以弄一个函数集合,这个集合针对同一个猫的图片的输入,可能有多种输出,比如猫,狗,猴子等, ...

随机推荐

  1. 《你不知道的JavaScript(上)》笔记——函数作用域和块作用域

    关于函数声明:如果 function 是声明中的第一个词, 那么就是一个函数声明, 否则就是一个函数表达式.例如匿名函数这种形式,函数会被当作函数表达式而不是一个标准的函数声明来处理. (functi ...

  2. ubuntu tensorflow cpu faster-rcnn 测试自己训练的模型

    (flappbird) luo@luo-All-Series:~/MyFile/tf-faster-rcnn_box$ (flappbird) luo@luo-All-Series:~/MyFile/ ...

  3. 阶段5 3.微服务项目【学成在线】_day02 CMS前端开发_20-CMS前端页面查询开发-页面原型-页面内容完善

    访问swaggerUI的接口 得到返回的json数据,就是我们页面上要显示的数据 复制到页面的数据这里 [ { "siteId": "5a751fab6abb5044e0 ...

  4. app怎么获取package与active name

    1.aapt dump badging apk名称 2.adb logcat | grep START 或者 adb shell "logcat | grep START" 然后在 ...

  5. Linux 系统中用Systemd 管理系统服务

    Systemd  命令详解: https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-manage-syste ...

  6. git 命令常用笔记

    1. 全局操作 git --version //git 机器上是否存在 git init --bare project.git //服务端:初始化一个新的仓库 chown -R zhangsan:zh ...

  7. windows10激活出现0xC0000022

    怎么办?不要担心,先找到了C:\Windows\System32\spp\store 文件夹,查看了下它的权限,如没有sppsvc,则手动添加了NT SERVICE\sppsvc 并给完全控制的权限. ...

  8. 【ARM-Linux开发】ti CMEM使用

    1.CMEM Overview http://processors.wiki.ti.com/index.php/CMEM_Overview 2.Changing the DVEVM memory ma ...

  9. 【并行计算与CUDA开发】英伟达硬件加速解码器在 FFMPEG 中的使用

    目录(?)[-] 私有驱动 编译 FFMPEG 使用 nvenc 这篇文档介绍如何在 ffmpeg 中使用 nvenc 硬件编码器. 私有驱动 nvenc 本身是依赖于 nvidia 底层的私有驱动的 ...

  10. VS开发】C中调用C++文件中定义的function函数

    [VS开发]C中调用C++文件中定义的function函数 标签(空格分隔): [VS开发] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 精要一揽 C调用 ...