斐波那契数列定义

Fibonacci array:1,1,2,3,5,8,13,21,34,...

在数学上,斐波那契数列是以递归的方法来定义:

  • F(0) = 0
  • F(1) = 1
  • F(n) = F(n-1) + F(n-2)

用文字描述,就是斐波那契数列由0和1开始,之后的斐波那契系数就是由之前的两数之和想加而得,首几个斐波那契数列系数是:0,1,1,2,3,5,8,13,21,34,55,...特别指出:0不是第一项,而是第零项。

递归解法

最容易想到的解法自然是按照公式的递归解法,具体实现如下:

int fib(int n) {
if (n < ) return n;
return fib(n-) + fib(n-);
}

但其实该递归解法会重复两次计算 fib(n-2) 项,时间数量级远远超过 n,是指数级别的增长,时间复杂度很高,如下图所示,更因递归调用占用大量的堆栈空间,对程序而言是一种灾难。所以该种解法如果在面试中肯定是不能让面试官满意的。

动态规划法

从上图的数据可以看出,递归算法对每个子问题都要重新计算。而实际上,若利用“动态规划”思想这是没必要的。对于已经计算完的子问题,下次再遇到直接使用。将已经计算的结果保存在数组中,在后面直接使用,避免重复计算。具体实现如下:

int fib(int n)
{
if (n <= ) return n;
vector<int> mem(n+, -);
mem[] = ;
mem[] = ;
for(int i = ; i <= n; i++){
mem[i] = mem[i-] + mem[i-];
}
return mem[n];
}

上面的这两种解法显然第二种更优,其实第二种解法是利用动态规划改进的算法,算法更简单效率更高。从时间复杂度上看,一般的递归算法是 O(n!),呈指数级增长,而采用动态规划思想的算法只有 O(n),但空间复杂度也为 O(n)。

顺序求和法

int fib(int n)
{
if (n < ) return n;
int a = ;
int b = ;
int c = ;
for (int i = ; i <= n; ++i) {
c = a + b;
a = b;
b = c;
}
return c;
}

该方法是根据 Fibonacci 数列的实际情况在动态规划的算法上改进的方法,不需要保存每一个子问题的结果,只需保存前两个子问题的结果,这样既节省了空间,又达到了动态规规划的效果。按照公式定义前开始的两项 a 和 b 为 0 和 1。后一项 c 是前两项之和,并且 a 和 b重新赋值,动态向右移动,时间复杂度为 O(n),空间复杂度为 O(1)。这种解法更加优秀!

斐波那契数列Fibonacci问题—动态规划的更多相关文章

  1. python实现斐波那契数列(Fibonacci sequence)

    使用Python实现斐波那契数列(Fibonacci sequence) 斐波那契数列形如 1,1,2,3,5,8,13,等等.也就是说,下一个值是序列中前两个值之和.写一个函数,给定N,返回第N个斐 ...

  2. 斐波那契数列(Fibonacci) iOS

    斐波那契数列Fibonacci 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2 ...

  3. 使用一位数组解决 1 1 2 3 5 8 13 数列问题 斐波纳契数列 Fibonacci

    斐波纳契数列 Fibonacci 输出这个数列的前20个数是什么? 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 使用数组实现输出数列的前30 ...

  4. 使用并行的方法计算斐波那契数列 (Fibonacci)

    更新:我的同事Terry告诉我有一种矩阵运算的方式计算斐波那契数列,更适于并行.他还提供了利用TBB的parallel_reduce模板计算斐波那契数列的代码(在TBB示例代码的基础上修改得来,比原始 ...

  5. 练习六:斐波那契数列(fibonacci)

    题目:斐波那契数列. 程序分析:斐波那契数列(Fibonacci sequence),又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……. 在数学上,斐波那契数列 ...

  6. Java实现斐波那契数列Fibonacci

    import java.util.Scanner; public class Fibonacci { public static void main(String[] args) { // TODO ...

  7. k阶斐波那契数列fibonacci第n项求值

    已知K阶斐波那契数列定义为:f0 = 0,  f1 = 0, … , fk-2 = 0, fk-1 = 1;fn = fn-1 + fn-2 + … + fn-k , n = k , k + 1, … ...

  8. 9 斐波那契数列Fibonacci

    题目1:写一个函数,输入n,求Fibonacci数列的第n项.该数列定义如下: n=0时,f(n)=0; n=1时,f(n)=1; n>1时,f(n)=f(n-1)+f(n-2) 1. 效率差的 ...

  9. rust实战系列 - 使用Iterator 迭代器实现斐波那契数列(Fibonacci )

    为什么是斐波那契数列 斐波那契数列十分适合用来实战rust的迭代器,算法也很简单,一目了然.这个例子可以用来学习Iterator的使用,十分适合刚学习了rust的迭代器章节后用来练练手. 代码实战 d ...

随机推荐

  1. struts1 action之间的跳转

    ActionForward actionForward = new ActionForward(); actionForward.setPath("xxxxxxxx");//跳转的 ...

  2. MySQL 5.7 OOM问题诊断——就是这么简单

    转载自:http://www.sohu.com/a/114903225_487483 Inside君最近把金庸先生的笑傲江湖重看了三遍,感慨良多.很多工作.管理.生活.学习上的问题都能在其中一窥究竟, ...

  3. 富文本编辑器复制word

    这种方法是servlet,编写好在web.xml里配置servlet-class和servlet-mapping即可使用 后台(服务端)java服务代码:(上传至ROOT/lqxcPics文件夹下) ...

  4. 7zip使用相关

    造冰箱的大熊猫@cnblogs 2019/11/2 1.仅存储不压缩 7z a -mx0 compressed.7z FileFolderPath 将FileFolderPath指向的文件或文件夹打包 ...

  5. python 版本及pip安装相关

    python2与python3 由于历史原因,Python有两个大的版本分支,Python2和Python3,又由于一些库只支持某个版本分支,所以需要在电脑上同时安装Python2和Python3,因 ...

  6. CSPS模拟69-72

    模拟69: T1,稍数学,主要还是dp(转移莫名像背包???),当C开到n2时复杂度为n4,考场上想了半天优化结果发现n是100,n4可过 #include<iostream> #incl ...

  7. zabbix4.2升级后中文字体乱码解决方法.

    字体文件目录: zabbix 4.2 /usr/share/zabbix/assets/fonts/ 4.0 /usr/share/zabbix/fonts/ php 脚本文件位置: /usr/sha ...

  8. Singleton模式(单例模式) 饿汉式和懒汉式

    目的:整个应用中有且只有一个实例,所有指向该类型实例的引用都指向这个实例. 好比一个国家就只有一个皇帝(XXX),此时每个人叫的“皇帝”都是指叫的XXX本人; 常见单例模式类型: 饿汉式单例:直接将对 ...

  9. 【原】Python基础-__init__

    #py中,有些名称前后都会加上俩个下划线,是有特殊含义的#在Py中,由这些名字组成的集合所包含的方法称为 “魔法方法”.如果在你的对象中#实现了这些方法的其中某一个,那这些方法会被py自动调用,几乎没 ...

  10. impdp不是内部或外部命令(Linux)

    1.在windows环境变量下,配置path系统变量. 右击“我的电脑”—>“高级”—>“环境变量”—>“系统变量”—>path:然后添加";oracle导入导出命令 ...