题目意思:

给你一个长度为\(n\)(\(1<=n<=5000\))的序列,并求出最长下降子序列的长度及个数,

并且,如果两个序列中元素的权值完全相同,那么即使它们的位置不一样,也只算一种情况.

解析

长度应该都能轻松求出来吧.

然而,情况数却有点难求啊..

其实主要是去重(要不然用计数\(DP\)也能过)...

但仔细想想,

首先,我们设\(f[i]\)为以\(i\)结尾的最长下降子序列的长度,

\(s[i]\)为以\(i\)结尾的最长上升子序列的个数.

那么对于两个权值相同的元素\(i\),\(j\),且\(i<j\),\(f[i]=f[j]\)(若不等于则不可能造成影响),

那么,以\(i\)结尾的序列,都能用\(j\)替换\(i\),

即\(s[i]\)的情况都会计算到\(s[j]\)中,

所以,在计算\(j\)的时候,将所有\(a[i](\)即权值\()=a[j]\),且\(f[i]=f[j]\)的\(s[i]\)都减掉就行了,

最后,上代码吧:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
} int n,a[100001],ans,ret;
int s[100001],f[100001]; int main(){
n=read();
s[0]=1;
for(int i=n;i;i--) a[i]=read();//倒过来也就变成了最长上升子序列,仅仅是个人习惯
for(int i=1;i<=n;i++){
int len=0;
for(int j=1;j<i;j++){
if(a[i]>a[j]) len=max(len,f[j]);
}
f[i]=len+1;
for(int j=0;j<i;j++){
if(f[j]==len&&a[j]<a[i]) s[i]+=s[j];
}
for(int j=0;j<i;j++) if(a[i]==a[j]&&f[j]==f[i]) s[i]-=s[j];//去重
}
for(int i=1;i<=n;i++) ans=max(ans,f[i]);//寻找最长子序列
for(int i=1;i<=n;i++) if(f[i]==ans) ret+=s[i];//统计答案
printf("%d %d\n",ans,ret);
return 0;
}

题解 【POJ1952】 BUY LOW, BUY LOWER的更多相关文章

  1. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  4. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  5. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  6. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  7. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  8. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  9. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

随机推荐

  1. Java笔记1: 输入输出与变量常量

    输入方法 nextLine 以Enter为结束符,也就是说 nextLine()方法返回的是输入回车之前的所有字符. 可以获得空白的一串字符. import java.util.Scanner; pu ...

  2. the specified service is marked as deletion,can not find the file specified

    使用命令注册windows service sc create CCGSQueueService binpath= "D:\DKX4003\services\xxx.xx.xx\xxx.ex ...

  3. 怎样使用 vue-cli ( Vue 脚手架 )

    vue-cli 是 Vue 官方出品的快速构建单页应用的脚手架, 相当于 React 官方出品的 create-react-app , 下面演示 vue-cli 的 最 基本用法: 1. 全局安装 v ...

  4. element-ui table float类型数据排序失败

    背景:对于16.88这样的数据,点击表头排序无效,仍然是乱序 解决办法:自定义排序方法,:sortable="true" :sort-mothod="xxxx" ...

  5. CentOS6.8安装Python3.6.3

    1.linux下安装python3 准备编译环境(环境如果不对的话,可能遇到各种问题,比如wget无法下载https链接的文件) yum install zlib-devel bzip2-devel ...

  6. Fox新闻报道,帮助北朝鲜使用加密货币专家被捕

    根据司法部的刑事诉讼,一名美国加密货币专家周四在洛杉矶被捕,原因是涉嫌帮助朝鲜使用加密货币逃避美国的制裁.网民都说敢帮助敌人,就应该关起来.  ​​​

  7. 海量数据处理 从哈希存储到Bloom Filter(1) (转载)

    先解释一下什么是哈希函数.哈希函数简单来说就是一种映射,它可取值的范围(定义域)通常很大,但值域相对较小.哈希函数所作的工作就是将一个很大定义域内的值映射到一个相对较小的值域内. 传统的哈希存储 假设 ...

  8. LintCode 547---两数组的交集

    public class Solution { /** * 给出两个数组,写出一个方法求出它们的交集 * @param nums1: an integer array * @param nums2: ...

  9. Oracle学习笔记:一个简单的行转列例子

    一个简单的行列转换例子,原始数据. create table temp_cwh_student ( name ), subject ), score ) ) select * from temp_cw ...

  10. [leetcode] 题解记录 11-20

    博客园markdown太烂, 题解详情https://github.com/TangliziGit/leetcode/blob/master/solution/11-20.md Leetcode So ...