题目意思:

给你一个长度为\(n\)(\(1<=n<=5000\))的序列,并求出最长下降子序列的长度及个数,

并且,如果两个序列中元素的权值完全相同,那么即使它们的位置不一样,也只算一种情况.

解析

长度应该都能轻松求出来吧.

然而,情况数却有点难求啊..

其实主要是去重(要不然用计数\(DP\)也能过)...

但仔细想想,

首先,我们设\(f[i]\)为以\(i\)结尾的最长下降子序列的长度,

\(s[i]\)为以\(i\)结尾的最长上升子序列的个数.

那么对于两个权值相同的元素\(i\),\(j\),且\(i<j\),\(f[i]=f[j]\)(若不等于则不可能造成影响),

那么,以\(i\)结尾的序列,都能用\(j\)替换\(i\),

即\(s[i]\)的情况都会计算到\(s[j]\)中,

所以,在计算\(j\)的时候,将所有\(a[i](\)即权值\()=a[j]\),且\(f[i]=f[j]\)的\(s[i]\)都减掉就行了,

最后,上代码吧:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
} int n,a[100001],ans,ret;
int s[100001],f[100001]; int main(){
n=read();
s[0]=1;
for(int i=n;i;i--) a[i]=read();//倒过来也就变成了最长上升子序列,仅仅是个人习惯
for(int i=1;i<=n;i++){
int len=0;
for(int j=1;j<i;j++){
if(a[i]>a[j]) len=max(len,f[j]);
}
f[i]=len+1;
for(int j=0;j<i;j++){
if(f[j]==len&&a[j]<a[i]) s[i]+=s[j];
}
for(int j=0;j<i;j++) if(a[i]==a[j]&&f[j]==f[i]) s[i]-=s[j];//去重
}
for(int i=1;i<=n;i++) ans=max(ans,f[i]);//寻找最长子序列
for(int i=1;i<=n;i++) if(f[i]==ans) ret+=s[i];//统计答案
printf("%d %d\n",ans,ret);
return 0;
}

题解 【POJ1952】 BUY LOW, BUY LOWER的更多相关文章

  1. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  4. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  5. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  6. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  7. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  8. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  9. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

随机推荐

  1. [官网] 一个很好的 search rpm 或者是deb 包的网站

    https://pkgs.org Home About About pkgs.org - Packages Search The pkgs.org is created to provide you ...

  2. web应用安全

    一.三种坏人与servlet安全 网络攻击者 对应的servlet安全规范 假冒者 认证 非法升级者 授权 窃听者 机密性   数据完整性 认证可以防止“假冒者”攻击,授权可以防止“非法升级者”攻击, ...

  3. 详解vue 路由跳转四种方式 (带参数)

    详解vue 路由跳转四种方式 (带参数):https://www.jb51.net/article/160401.htm 1.  router-link ? 1 2 3 4 5 6 7 8 9 10 ...

  4. GTID复制

    什么是GTID呢, 简而言之,就是全局事务ID(global transaction identifier ),最初由google实现,官方MySQL在5.6才加入该功能.GTID是事务提交时创建分配 ...

  5. 植物大战僵尸:寻找阳光掉落Call调用

    实验目标:通过遍历阳光产生的时间,寻找阳光产生的本地Call,使用代码注入器注入,自定义生成阳光 阳光CALL遍历技巧: 进入植物大战僵尸-> 当出现阳光后->马上搜索未知初始数值 返回游 ...

  6. .Net面试题一

    1.进程和线程的区别是什么? 答:https://www.cnblogs.com/renzhuang/articles/6733461.html2.请列举ASP.Net页面之间传递值的几种方式?列出3 ...

  7. Lua访问网页

    示例 例子,实现https方式,登录网站,访问某个网页,修改其中参数的功能.其中xx应用时候需要修改. require("curl") local ipList = { " ...

  8. java——多线程知识点大总结

    1:理解线程的概念之前,我们有必要先理解一下进程的概念 程序(Program)是为实现特定目标或解决特定问题而用计算机语言(比如Java语言)编写的命令序列的集合. 进程指一个程序的一次执行过程   ...

  9. 和 Python 2.x 说再见!项目移到python3

    如果你仍在使用 2.x,那么是时候将你的代码移植到 Python 3 了. 在技术的长河中,软件.工具.系统等版本的迭代本是常事,但由于使用习惯.版本的兼容性.易用性等因素,很多用户及开发者在使用或做 ...

  10. redis主从+ 哨兵模式(sentinel)+漂移VIP实现高可用系统

    原文:https://www.jianshu.com/p/c2ab606b00b7 客户端程序 客户端程序(如PHP程序)连接redis时需要ip和port,但redis-server进行故障转移时, ...