Python异步IO之协程(二):使用asyncio的不同方法实现协程
引言:在上一章中我们介绍了从yield from的来源到async的使用,并在最后以asyncio.wait()方法实现协程,下面我们通过不同控制结构来实现协程,让我们一起来看看他们的不同作用吧~
在多个协程中的线性控制流很容易通过内置的关键词await
来管理。使用asyncio
模块中的方法可以实现更多复杂的结构,它可以并发地完成多个协程。
一、asyncio.wait()
你可以将一个操作分成多个部分并分开执行,而wait(tasks)
可以被用于中断任务集合(tasks)中的某个被事件循环轮询到的任务,直到该协程的其他后台操作完成才被唤醒。
import time
import asyncio
async def taskIO_1():
print('开始运行IO任务1...')
await asyncio.sleep(2) # 假设该任务耗时2s
print('IO任务1已完成,耗时2s')
return taskIO_1.__name__
async def taskIO_2():
print('开始运行IO任务2...')
await asyncio.sleep(3) # 假设该任务耗时3s
print('IO任务2已完成,耗时3s')
return taskIO_2.__name__
async def main(): # 调用方
tasks = [taskIO_1(), taskIO_2()] # 把所有任务添加到task中
done,pending = await asyncio.wait(tasks) # 子生成器
for r in done: # done和pending都是一个任务,所以返回结果需要逐个调用result()
print('协程无序返回值:'+r.result()) if __name__ == '__main__':
start = time.time()
loop = asyncio.get_event_loop() # 创建一个事件循环对象loop
try:
loop.run_until_complete(main()) # 完成事件循环,直到最后一个任务结束
finally:
loop.close() # 结束事件循环
print('所有IO任务总耗时%.5f秒' % float(time.time()-start))
执行结果如下:
开始运行IO任务1...
开始运行IO任务2...
IO任务1已完成,耗时2s
IO任务2已完成,耗时3s
协程无序返回值:taskIO_2
协程无序返回值:taskIO_1
所有IO任务总耗时3.00209秒
【解释】:wait()官方文档用法如下:
done, pending = await asyncio.wait(aws)
此处并发运行传入的aws(awaitable objects),同时通过await返回一个包含(done, pending)的元组,done表示已完成的任务列表,pending表示未完成的任务列表。
注:
①只有当给wait()传入timeout参数时才有可能产生pending列表。
②通过wait()返回的结果集是按照事件循环中的任务完成顺序排列的,所以其往往和原始任务顺序不同。
二、asyncio.gather()
如果你只关心协程并发运行后的结果集合,可以使用gather()
,它不仅通过await
返回仅一个结果集,而且这个结果集的结果顺序是传入任务的原始顺序。
import time
import asyncio
async def taskIO_1():
print('开始运行IO任务1...')
await asyncio.sleep(3) # 假设该任务耗时3s
print('IO任务1已完成,耗时3s')
return taskIO_1.__name__
async def taskIO_2():
print('开始运行IO任务2...')
await asyncio.sleep(2) # 假设该任务耗时2s
print('IO任务2已完成,耗时2s')
return taskIO_2.__name__
async def main(): # 调用方
resualts = await asyncio.gather(taskIO_1(), taskIO_2()) # 子生成器
print(resualts) if __name__ == '__main__':
start = time.time()
loop = asyncio.get_event_loop() # 创建一个事件循环对象loop
try:
loop.run_until_complete(main()) # 完成事件循环,直到最后一个任务结束
finally:
loop.close() # 结束事件循环
print('所有IO任务总耗时%.5f秒' % float(time.time()-start))
执行结果如下:
开始运行IO任务2...
开始运行IO任务1...
IO任务2已完成,耗时2s
IO任务1已完成,耗时3s
['taskIO_1', 'taskIO_2']
所有IO任务总耗时3.00184秒
【解释】:gather()
通过await
直接返回一个结果集列表,我们可以清晰的从执行结果看出来,虽然任务2是先完成的,但最后返回的结果集的顺序是按照初始传入的任务顺序排的。
三、asyncio.as_completed()
as_completed(tasks)
是一个生成器,它管理着一个协程列表(此处是传入的tasks)的运行。当任务集合中的某个任务率先执行完毕时,会率先通过await
关键字返回该任务结果。可见其返回结果的顺序和wait()
一样,均是按照完成任务顺序排列的。
import time
import asyncio
async def taskIO_1():
print('开始运行IO任务1...')
await asyncio.sleep(3) # 假设该任务耗时3s
print('IO任务1已完成,耗时3s')
return taskIO_1.__name__
async def taskIO_2():
print('开始运行IO任务2...')
await asyncio.sleep(2) # 假设该任务耗时2s
print('IO任务2已完成,耗时2s')
return taskIO_2.__name__
async def main(): # 调用方
tasks = [taskIO_1(), taskIO_2()] # 把所有任务添加到task中
for completed_task in asyncio.as_completed(tasks):
resualt = await completed_task # 子生成器
print('协程无序返回值:'+resualt) if __name__ == '__main__':
start = time.time()
loop = asyncio.get_event_loop() # 创建一个事件循环对象loop
try:
loop.run_until_complete(main()) # 完成事件循环,直到最后一个任务结束
finally:
loop.close() # 结束事件循环
print('所有IO任务总耗时%.5f秒' % float(time.time()-start))
执行结果如下:
开始运行IO任务2...
开始运行IO任务1...
IO任务2已完成,耗时2s
协程无序返回值:taskIO_2
IO任务1已完成,耗时3s
协程无序返回值:taskIO_1
所有IO任务总耗时3.00300秒
【解释】:从上面的程序可以看出,使用as_completed(tasks)和wait(tasks)相同之处是返回结果的顺序是协程的完成顺序,这与gather()恰好相反。而不同之处是as_completed(tasks)可以实时返回当前完成的结果,而wait(tasks)需要等待所有协程结束后返回的done去获得结果。
四、总结
以下aws
指:awaitable objects
。即可等待对象集合,如一个协程是一个可等待对象,一个装有多个协程的列表是一个aws
。
asyncio | 主要传参 | 返回值顺序 | await 返回值类型 |
函数返回值类型 |
wait() | aws | 协程完成顺序 |
(done,pending) 装有两个任务列表元组 |
coroutine |
as_completed() | aws | 协程完成顺序 | 原始返回值 | 迭代器 |
gather() | *aws | 传参任务顺序 | 返回值列表 | awaitable |
【参考文献】:
[1] Composing Coroutines with Control Structures
Python异步IO之协程(二):使用asyncio的不同方法实现协程的更多相关文章
- python异步IO编程(二)
python异步IO编程(二) 目录 开门见山 Async IO设计模式 事件循环 asyncio 中的其他顶层函数 开门见山 下面我们用两个简单的例子来让你对异步IO有所了解 import asyn ...
- python异步IO编程(一)
python异步IO编程(一) 基础概念 协程:python generator与coroutine 异步IO (async IO):一种由多种语言实现的与语言无关的范例(或模型). asyncio ...
- Python异步IO --- 轻松管理10k+并发连接
前言 异步操作在计算机软硬件体系中是一个普遍概念,根源在于参与协作的各实体处理速度上有明显差异.软件开发中遇到的多数情况是CPU与IO的速度不匹配,所以异步IO存在于各种编程框架中,客户端比如浏览 ...
- Python异步IO之协程(一):从yield from到async的使用
引言:协程(coroutine)是Python中一直较为难理解的知识,但其在多任务协作中体现的效率又极为的突出.众所周知,Python中执行多任务还可以通过多进程或一个进程中的多线程来执行,但两者之中 ...
- python -- 异步IO 协程
python 3.4 >>> import asyncio >>> from datetime import datetime >>> @asyn ...
- python 异步IO(syncio) 协程
python asyncio 网络模型有很多中,为了实现高并发也有很多方案,多线程,多进程.无论多线程和多进程,IO的调度更多取决于系统,而协程的方式,调度来自用户,用户可以在函数中yield一个状态 ...
- python 异步IO( asyncio) 协程
python asyncio 网络模型有很多中,为了实现高并发也有很多方案,多线程,多进程.无论多线程和多进程,IO的调度更多取决于系统,而协程的方式,调度来自用户,用户可以在函数中yield一个状态 ...
- Python - 异步IO\数据库\队列\缓存
协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程,协程一定是在单线程运行的. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和 ...
- Python异步IO
在IO操作的过程中,当前线程被挂起,而其他需要CPU执行的代码就无法被当前线程执行了. 我们可以使用多线程或者多进程来并发执行代码,为多个用户服务. 但是,一旦线程数量过多,CPU的时间就花在线程切换 ...
随机推荐
- Django_03_后台管理
后台管理 站点分为内容发布和公共访问两部分 内容发布的部分由网站的管理员负责查看.添加.修改.删除数据,开发这些重复的功能是一件单调乏味.缺乏创造力的工作,为此,Django能够根据定义的模型类自动地 ...
- PEP8规范 Python
前言 从很多地方搬运+总结,以后根据这个标准再将python的一些奇技淫巧结合起来,写出更pythonic的代码~ PEP8 编码规范 英文原版请点击这里 以下是@bobo的整理,原文请见PEP8 P ...
- macOS 终端常用命令
macOS 常用命令 基本命令 1.列出文件 ls 参数 目录名 例:看看驱动目录下有什么:ls /System/Library/Extensions 参数 -w 显示中文,-l 详细信息,-a 包括 ...
- windows10下成功安装docker splash及遇到问题的解决方案
转载出处:http://www.cnblogs.com/321lxl/p/9536616.html
- CSS世界中那些说起来很冷的知识
CSS世界中那些说起来很冷的知识 最近读了张鑫旭的新书<CSS世界>收获了不少对CSS的深度理解 也正值个人在公司内部进行部分章节的内容分享,于是顺带着直接把我即将分享的内容先给大家过过目 ...
- Path variable [contentHash:8] not implemented in this context: styles.[contentHash:8].css
webPack 升级到 4.3.0 导致 extract-text-webpack-plugin 无法使用
- mysql基础_数据类型
1.数字 (1)tinyint(小整数值) 范围:有符号(-128,127) 无符号(0.255) (2)int(大整数值) 范围:有符号 (-2 147 483 648,2 147 483 647 ...
- Could not install packages due to an EnvironmentError: [Errno 13] Permission denied: '/usr/local/bin/tensorboard'
使用pip install --user tensorflow-serving-api命令即可
- pypdf2:下载Americanlife网页生成pdf合并pdf并添加书签
初步熟悉 安装 pip install pypdf2 合并并添加书签 #!/usr/bin/env python3.5 # -*- coding: utf-8 -*- # @Time : 2019/1 ...
- 2019.6.20 校内测试 NOIP模拟 Day 1 分析+题解
这次是zay神仙给我们出的NOIP模拟题,不得不说好难啊QwQ,又倒数了~ T1 大美江湖 这个题是一个简单的模拟题. ----zay 唯一的坑点就是打怪的时候计算向上取整时,如果用ceil函数一 ...