import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction; import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List; /**
* repartitions 算子:
* 增加分区,使用shuffle操作
*/
public class RepartitionsOperator { public static void main(String[] args){
SparkConf conf = new SparkConf().setMaster("local").setAppName("repartitions");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> names = Arrays.asList("w1","w2","w3","w4","w5","w6"); JavaRDD<String> nameRdd = sc.parallelize(names,2); JavaRDD<String> namefristRdd = nameRdd.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<String> iterator) throws Exception { List<String> list = new ArrayList<>();
while (iterator.hasNext()){
list.add("1["+index+"]"+iterator.next());
}
return list.iterator();
}
},true); //增加分区
JavaRDD<String> temp = namefristRdd.repartition(5); JavaRDD<String> nameseconedRdd = temp.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer index, Iterator<String> iterator) throws Exception {
List<String> list = new ArrayList<>();
while (iterator.hasNext()){
list.add("2["+index+"]:"+iterator.next());
}
return list.iterator();
}
},false); nameseconedRdd.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
System.err.println(s);
}
}); }
} 微信扫描下图二维码加入博主知识星球,获取更多大数据、人工智能、算法等免费学习资料哦!

java实现spark常用算子之Repartitions的更多相关文章

  1. java实现spark常用算子之Union

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  2. java实现spark常用算子之TakeSample

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  3. java实现spark常用算子之SaveAsTextFile

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  4. java实现spark常用算子之mapPartitionsWithIndex

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  5. java实现spark常用算子之map

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  6. java实现spark常用算子之intersection

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  7. java实现spark常用算子之frist

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  8. java实现spark常用算子之flatmap

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  9. java实现spark常用算子之filter

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

随机推荐

  1. [学习]sentinel中的DatatSource(二) WritableDataSource

    sentinel是今年阿里开源的高可用防护的流量管理框架. git地址:https://github.com/alibaba/Sentinel wiki:https://github.com/alib ...

  2. android studio最新版的安装和配置(3.1.2)

    android studio最新版的安装和配置(3.1.2) 下载地址: android studio:http://www.android-studio.org/ JDK:http://www.or ...

  3. LC 738. Monotone Increasing Digits

    Given a non-negative integer N, find the largest number that is less than or equal to N with monoton ...

  4. flutter AnimatedPositioned

    Positioned 的动画版. 只有是 Stack 的 child 时才能工作. 如果 child 的 size 在动画过程会改变,则 AnimatedPositioned 是很好的选择 doubl ...

  5. Linux任务后台运行的方法

    linux在后台运行程序当我们在终端或控制台工作时,可能不希望由于运行一个作业而占住了屏幕,因为可能还有更重要的事情要做,比如阅读电子邮件.对于密集访问磁盘的进程,我们更希望它能够在每天的非负荷高峰时 ...

  6. 【JVM学习笔记】扩展类加载器

    扩展类加载器独有的特点,代码如下 public class Sample { } public class Test { static { System.out.println("Test ...

  7. socket --自己简单的理解

    一,网络编程中两个主要的问题 一个是如何准确的定位网络上一台或多台主机,另一个就是找到主机后如何可靠高效的进行数据传输. 在TCP/IP协议中IP层主要负责网络主机的定位,数据传输的路由,由IP地址可 ...

  8. docker 导出多个镜像合并成一个tar

    导出单个镜像 docker save [images] > [name.tar] 倒出多个镜像合并成一个tar包 docker save [images] [images] > [name ...

  9. DOTS概述

    Unity数据导向技术栈有三个主要部分:Unity实体 - 组件 - 系统(ECS),Unity C#作业系统和Unity Burst编译器. 实体 - 组件 - 系统概述 ECS提供了一种游戏设计方 ...

  10. CSS实现网页背景图片自适应全屏,自适应背景图片

    一张清晰漂亮的背景图片能给网页加分不少,设计师也经常会给页面的背景使用大图,我们既不想图片因为不同分辨率图片变形,也不希望当在大屏的情况下,背景有一块露白,简而言之,就是实现能自适应屏幕大小又不会变形 ...