准备工作,先准备 python 环境,下载 BERT 语言模型

  • Python 3.6 环境

需要安装kashgari

Backend pypi version desc
TensorFlow 2.x pip install ‘kashgari>=2.0.0’ coming soon
TensorFlow 1.14+ pip install ‘kashgari>=1.0.0,<2.0.0’ current version
Keras pip install ‘kashgari<1.0.0’ legacy version
  • BERT, Chinese 中文模型

    我选择的是工大的BERT-wwm-ext模型

在此感谢上述作者

数据集准备

from kashgari.corpus import ChineseDailyNerCorpus

train_x, train_y = ChineseDailyNerCorpus.load_data('train')
valid_x, valid_y = ChineseDailyNerCorpus.load_data('validate')
test_x, test_y = ChineseDailyNerCorpus.load_data('test') print(f"train data count: {len(train_x)}")
print(f"validate data count: {len(valid_x)}")
print(f"test data count: {len(test_x)}")
train data count: 20864
validate data count: 2318
test data count: 4636

采用人民日报标注的数据集,格式为:

海 O
钓 O
比 O
赛 O
地 O
点 O
在 O
厦 B-LOC
门 I-LOC
与 O
金 B-LOC
门 I-LOC
之 O
间 O
的 O
海 O
域 O
。 O

创建 BERT embedding

import kashgari
from kashgari.embeddings import BERTEmbedding bert_embed = BERTEmbedding('chinese_wwm_ext_L-12_H-768_A-12',
task=kashgari.LABELING,
sequence_length=100)

创建模型并训练

from kashgari.tasks.labeling import BiLSTM_CRF_Model

# 还可以选择 `CNN_LSTM_Model`, `BiLSTM_Model`, `BiGRU_Model` 或 `BiGRU_CRF_Model`

model = BiLSTM_CRF_Model(bert_embed)
model.fit(train_x,
train_y,
x_validate=valid_x,
y_validate=valid_y,
epochs=20,
batch_size=512)
model.save('ner.h5')

模型评估

model.evaluate(test_x, test_y)

BERT + B-LSTM-CRF 模型效果最好。详细得分如下:

precision recall f1-score support
LOC 0.9208 0.9324 0.9266
ORG 0.8728 0.8882 0.8804
PER 0.9622 0.9633 0.9627
avg / total 0.9169 0.9271 0.9220

模型使用

# -*- coding: utf-8 -*-
import kashgari
import re loaded_model = kashgari.utils.load_model('per_ner.h5') def cut_text(text, lenth):
textArr = re.findall('.{' + str(lenth) + '}', text)
textArr.append(text[(len(textArr) * lenth):])
return textArr def extract_labels(text, ners):
ner_reg_list = []
if ners:
new_ners = []
for ner in ners:
new_ners += ner;
for word, tag in zip([char for char in text], new_ners):
if tag != 'O':
ner_reg_list.append((word, tag)) # 输出模型的NER识别结果
labels = {}
if ner_reg_list:
for i, item in enumerate(ner_reg_list):
if item[1].startswith('B'):
label = ""
end = i + 1
while end <= len(ner_reg_list) - 1 and ner_reg_list[end][1].startswith('I'):
end += 1 ner_type = item[1].split('-')[1] if ner_type not in labels.keys():
labels[ner_type] = [] label += ''.join([item[0] for item in ner_reg_list[i:end]])
labels[ner_type].append(label) return labels while True:
text_input = input('sentence: ') texts = cut_text(text_input, 100)
ners = loaded_model.predict([[char for char in text] for text in texts])
print(ners)
labels = extract_labels(text_input, ners)
print(labels)

参考文献

Chinese-BERT-wwm:https://github.com/ymcui/Chinese-BERT-wwm

Kashgari:https://github.com/BrikerMan/Kashgari

NLP 基于kashgari和BERT实现中文命名实体识别(NER)的更多相关文章

  1. 基于 bi-LSTM和CRF的中文命名实体识别

    follow: https://github.com/zjy-ucas/ChineseNER  这里边主要识别的实体如图所示,其实也就主要识别人名PER,机构ORG和地点LOC: B表示开始的字节,I ...

  2. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  3. DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别

    三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...

  4. NLP入门(八)使用CRF++实现命名实体识别(NER)

    CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...

  5. 命名实体识别(NER)

    一.任务 Named Entity Recognition,简称NER.主要用于提取时间.地点.人物.组织机构名. 二.应用 知识图谱.情感分析.机器翻译.对话问答系统都有应用.比如,需要利用命名实体 ...

  6. pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别

    文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...

  7. 使用Standford coreNLP进行中文命名实体识别

    因为工作需要,调研了一下Stanford coreNLP的命名实体识别功能. Stanford CoreNLP是一个比较厉害的自然语言处理工具,很多模型都是基于深度学习方法训练得到的. 先附上其官网链 ...

  8. 『深度应用』NLP命名实体识别(NER)开源实战教程

    近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...

  9. 零基础入门--中文命名实体识别(BiLSTM+CRF模型,含代码)

    自己也是一个初学者,主要是总结一下最近的学习,大佬见笑. 中文分词说到命名实体抽取,先要了解一下基于字标注的中文分词.比如一句话 "我爱北京天安门”. 分词的结果可以是 “我/爱/北京/天安 ...

随机推荐

  1. LeetCode 分类颜色

    LeetCode   分类颜色 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 0. 1 和 ...

  2. 五、Jmeter中提取JSON响应中数组的长度

    json响应如下: { "code":0, "data":{ "data":[ { "amount":50000, &q ...

  3. leetcode 547朋友圈

    方法一:染色法 类似于岛屿的个数也可以用染色法:通过深度优先搜索来做 使用一个数组来表示当前朋友a是否已经包含到已经遍历的朋友圈中,遍历所有的朋友,如果当前朋友没有在已经访问的朋友圈中,即visite ...

  4. echarts修改X,Y轴上的颜色

     分为2.0和3.0 一.2.0 修改的代码: x轴: xAxis : [ { type : 'category', data : ['<30','30-','40-','50-','60-', ...

  5. pid稳态控制

    https://blog.csdn.net/qq_25352981/article/details/81007075

  6. ServletRequest与ServletResponse

    http://lavasoft.blog.51cto.com/62575/275586/ 请求和相应是Web交互最基本的模式,在Servlet中,分别用HttpServletRequest与HttpS ...

  7. postman提交数组格式方式

    提交数组格式数据,对应的服务器端接收的是@RequestBody 和对应的接收值

  8. (“(null)” is of a model that is not supported by this version of Xcode. Please...)

    真机测试遇到以下问题: (还以为手机不支持Xcode的版本呢) 解决方法: 发现只要将XCode重启后就可以真机运行了,碰见这个问题的朋友可以试下,我反正是被坑了半小时...

  9. k8s设置集群角色

    查看所有的node节点 [root@test1 ~]# kubectl get nodes NAME STATUS ROLES AGE VERSION test1 Ready <none> ...

  10. JavaScript DOM 编程艺术(第二版) 常用JS小脚本

    function addLoadEvent(func) { var oldonload = window.onload; if (typeof window.onload != 'function') ...