准备工作,先准备 python 环境,下载 BERT 语言模型

  • Python 3.6 环境

需要安装kashgari

Backend pypi version desc
TensorFlow 2.x pip install ‘kashgari>=2.0.0’ coming soon
TensorFlow 1.14+ pip install ‘kashgari>=1.0.0,<2.0.0’ current version
Keras pip install ‘kashgari<1.0.0’ legacy version
  • BERT, Chinese 中文模型

    我选择的是工大的BERT-wwm-ext模型

在此感谢上述作者

数据集准备

from kashgari.corpus import ChineseDailyNerCorpus

train_x, train_y = ChineseDailyNerCorpus.load_data('train')
valid_x, valid_y = ChineseDailyNerCorpus.load_data('validate')
test_x, test_y = ChineseDailyNerCorpus.load_data('test') print(f"train data count: {len(train_x)}")
print(f"validate data count: {len(valid_x)}")
print(f"test data count: {len(test_x)}")
train data count: 20864
validate data count: 2318
test data count: 4636

采用人民日报标注的数据集,格式为:

海 O
钓 O
比 O
赛 O
地 O
点 O
在 O
厦 B-LOC
门 I-LOC
与 O
金 B-LOC
门 I-LOC
之 O
间 O
的 O
海 O
域 O
。 O

创建 BERT embedding

import kashgari
from kashgari.embeddings import BERTEmbedding bert_embed = BERTEmbedding('chinese_wwm_ext_L-12_H-768_A-12',
task=kashgari.LABELING,
sequence_length=100)

创建模型并训练

from kashgari.tasks.labeling import BiLSTM_CRF_Model

# 还可以选择 `CNN_LSTM_Model`, `BiLSTM_Model`, `BiGRU_Model` 或 `BiGRU_CRF_Model`

model = BiLSTM_CRF_Model(bert_embed)
model.fit(train_x,
train_y,
x_validate=valid_x,
y_validate=valid_y,
epochs=20,
batch_size=512)
model.save('ner.h5')

模型评估

model.evaluate(test_x, test_y)

BERT + B-LSTM-CRF 模型效果最好。详细得分如下:

precision recall f1-score support
LOC 0.9208 0.9324 0.9266
ORG 0.8728 0.8882 0.8804
PER 0.9622 0.9633 0.9627
avg / total 0.9169 0.9271 0.9220

模型使用

# -*- coding: utf-8 -*-
import kashgari
import re loaded_model = kashgari.utils.load_model('per_ner.h5') def cut_text(text, lenth):
textArr = re.findall('.{' + str(lenth) + '}', text)
textArr.append(text[(len(textArr) * lenth):])
return textArr def extract_labels(text, ners):
ner_reg_list = []
if ners:
new_ners = []
for ner in ners:
new_ners += ner;
for word, tag in zip([char for char in text], new_ners):
if tag != 'O':
ner_reg_list.append((word, tag)) # 输出模型的NER识别结果
labels = {}
if ner_reg_list:
for i, item in enumerate(ner_reg_list):
if item[1].startswith('B'):
label = ""
end = i + 1
while end <= len(ner_reg_list) - 1 and ner_reg_list[end][1].startswith('I'):
end += 1 ner_type = item[1].split('-')[1] if ner_type not in labels.keys():
labels[ner_type] = [] label += ''.join([item[0] for item in ner_reg_list[i:end]])
labels[ner_type].append(label) return labels while True:
text_input = input('sentence: ') texts = cut_text(text_input, 100)
ners = loaded_model.predict([[char for char in text] for text in texts])
print(ners)
labels = extract_labels(text_input, ners)
print(labels)

参考文献

Chinese-BERT-wwm:https://github.com/ymcui/Chinese-BERT-wwm

Kashgari:https://github.com/BrikerMan/Kashgari

NLP 基于kashgari和BERT实现中文命名实体识别(NER)的更多相关文章

  1. 基于 bi-LSTM和CRF的中文命名实体识别

    follow: https://github.com/zjy-ucas/ChineseNER  这里边主要识别的实体如图所示,其实也就主要识别人名PER,机构ORG和地点LOC: B表示开始的字节,I ...

  2. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  3. DL4NLP —— 序列标注:BiLSTM-CRF模型做基于字的中文命名实体识别

    三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练 ...

  4. NLP入门(八)使用CRF++实现命名实体识别(NER)

    CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机 ...

  5. 命名实体识别(NER)

    一.任务 Named Entity Recognition,简称NER.主要用于提取时间.地点.人物.组织机构名. 二.应用 知识图谱.情感分析.机器翻译.对话问答系统都有应用.比如,需要利用命名实体 ...

  6. pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别

    文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...

  7. 使用Standford coreNLP进行中文命名实体识别

    因为工作需要,调研了一下Stanford coreNLP的命名实体识别功能. Stanford CoreNLP是一个比较厉害的自然语言处理工具,很多模型都是基于深度学习方法训练得到的. 先附上其官网链 ...

  8. 『深度应用』NLP命名实体识别(NER)开源实战教程

    近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recogni ...

  9. 零基础入门--中文命名实体识别(BiLSTM+CRF模型,含代码)

    自己也是一个初学者,主要是总结一下最近的学习,大佬见笑. 中文分词说到命名实体抽取,先要了解一下基于字标注的中文分词.比如一句话 "我爱北京天安门”. 分词的结果可以是 “我/爱/北京/天安 ...

随机推荐

  1. Linux上安装Python3

    1. 安装支持包 yum -y groupinstall "Development tools" yum -y install zlib-devel bzip2-devel ope ...

  2. tfserving 调用deepfm 并预测 java 【参考】

    https://blog.csdn.net/luoyexuge/article/details/79941565?utm_source=blogxgwz8 首先是libsvm格式数据生成java代码, ...

  3. 代码实现:从键盘输入接收一个文件夹路径,打印出该文件夹下所有的.java文件名

    package com.loaderman.test; import java.io.File; import java.io.FileReader; import java.util.Scanner ...

  4. tensorflow分布式运行

    1.知识点 """ 单机多卡:一台服务器上多台设备(GPU) 参数服务器:更新参数,保存参数 工作服务器:主要功能是去计算 更新参数的模式: 1.同步模型更新 2.异步模 ...

  5. Mysql中用SQL增加、删除、修改(包括字段长度/注释/字段名)总结

    转: Mysql中用SQL增加.删除.修改(包括字段长度/注释/字段名)总结 2018年09月05日 10:14:37 桥Dopey 阅读数:1830   版权声明:本文为博主原创文章,未经博主允许不 ...

  6. IntelliJ IDEA 设置护眼背景色

    IntelliJ IDEA 设置护眼背景色 1.设置主体和字体 Settings --> Appearance & Behavior --> Appearance Theme: I ...

  7. 使用构造器模式动态构建Map作为mybatis的查询条件

    import com.alibaba.fastjson.JSON; import com.fasterxml.jackson.databind.ObjectMapper; import com.fas ...

  8. JavaScript 基础入门11 - 运动框架的封装

    目录 JavaScript 运动原理 运动基础 简单运动的封装 淡入淡出 不同属性的设置 多属性值同时运动 运动回调,链式运动 缓冲运动 加入缓冲的运动框架 案例1 多图片展开收缩 运动的留言本 Ja ...

  9. phpstorm 远程连接服务器进行开发

    phpstorm phpstorm是一款功能强大的ide编辑器,有了它,你敲代码速度能比用notepad++快数倍(初学者不建议使用ide,建议使用notepad++),缺点是没有固态的电脑带起来吃力 ...

  10. 关于js中断ajax请求

    停止javascript的ajax请求,一种是设置超时时间让ajax自动断开,另一种为手动去停止ajax请求,其核心是调用XMLHttpRequest对象上的abort方法,这里,我们以jquery举 ...