[USACO10HOL]赶小猪
嘟嘟嘟
这题和某一类概率题一样,大体思路都是高斯消元解方程。
不过关键还是状态得想明白。刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\frac{p}{q}\)?),于是就考虑换状态。
一个非常好的状态是炸弹传到点\(i\)的概率,这样答案再乘以一个\(\frac{p}{q}\)就好了。转移也特别好办:\(f[i] = \sum (1 - \frac{p}{q}) * \frac{1}{du[v]}*f[v]\)。
别忘了结点1的概率要加1。
于是这题就做完了。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<assert.h>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 305;
const int maxe = 1e6 + 5;
In ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
In void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
In void MYFILE()
{
#ifndef mrclr
freopen(".in", "r", stdin);
freopen(".out", "w", stdout);
#endif
}
int n, m, p, q;
db P;
struct Edge
{
int nxt, to;
}e[maxe];
int head[maxn], ecnt = -1, du[maxn];
In void addEdge(int x, int y)
{
++du[x];
e[++ecnt] = (Edge){head[x], y};
head[x] = ecnt;
}
db f[maxn][maxn], ans[maxn];
In void init()
{
f[1][n + 1] = 1;
for(int i = 1; i <= n; ++i)
{
f[i][i] = 1;
for(int j = head[i], v; ~j; j = e[j].nxt)
f[v = e[j].to][i] -= (1 - P) * 1.0 / du[i];
}
}
In void Gauss()
{
for(int i = 1; i <= n; ++i)
{
int pos = i;
for(int j = i + 1; j <= n; ++j)
if(fabs(f[j][i]) > fabs(f[pos][i])) pos = j;
if(pos ^ i) swap(f[pos], f[i]);
if(fabs(f[i][i]) < eps) continue;
db tp = f[i][i];
for(int j = i; j <= n + 1; ++j) f[i][j] /= tp;
for(int j = i + 1; j <= n; ++j)
{
db tp = f[j][i];
for(int k = i; k <= n + 1; ++k) f[j][k] -= tp * f[i][k];
}
}
for(int i = n; i; --i)
{
ans[i] = f[i][n + 1];
for(int j = i - 1; j; --j) f[j][n + 1] -= f[j][i] * ans[i];
}
}
int main()
{
//MYFILE();
Mem(head, -1);
n = read(), m = read(), p = read(), q = read();
P = 1.0 * p / q;
for(int i = 1; i <= m; ++i)
{
int x = read(), y = read();
addEdge(x, y), addEdge(y, x);
}
init(), Gauss();
for(int i = 1; i <= n; ++i) printf("%.9lf\n", ans[i] * P);
return 0;
}
[USACO10HOL]赶小猪的更多相关文章
- [Luogu2973][USACO10HOL]赶小猪
Luogu sol 首先解释一波这道题无重边无自环 设\(f_i\)表示\(i\)点上面的答案. 方程 \[f_u=\sum_{v,(u,v)\in E}(1-\frac PQ)\frac{f_v}{ ...
- Luogu2973:[USACO10HOL]赶小猪
题面 Luogu Sol 设\(f[i]\)表示炸弹到\(i\)不爆炸的期望 高斯消元即可 另外,题目中的概率\(p/q\)实际上为\(1-p/q\) 还有,谁能告诉我不加\(EPS\),为什么会输出 ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多... 把边搞到点上然后按套路Gauss即可 貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过... 代码: #include<cst ...
- [Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述 The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. ...
- 小猪cms微信二次开发之怎样分页
$db=D('Classify'); $zid=$db->where(array('id'=>$this->_GET('fid'),'token'=>$this->tok ...
随机推荐
- Vs code 下设置python tasks.json
{ // See https://go.microsoft.com/fwlink/?LinkId=733558 // for the documentation about the tasks.jso ...
- Tree Generator™ CodeForces - 1149C (线段树,括号序列)
大意: 给定括号序列, 每次询问交换两个括号, 求括号树的直径. 用[ZJOI2007]捉迷藏的方法维护即可. #include <iostream> #include <algor ...
- (二)CXF之用CXF官方工具生成客户端Client
一.CXF工具的下载与使用 登录CXF官网:http://cxf.apache.org/download.html 下载,本系列使用的是3.1.5版本: 添加path环境变量 二.案例 2.1 发布w ...
- Nginx与负载均衡
Nginx,首先是一款轻量级的Web服务器,其特点是占有内存少,并发能力强,大厂用户有:百度.新浪.网易.腾讯等.其次,它是一款反向代理服务器:第三,它还是一款电子邮件(IMAP/POP3)代理服务器 ...
- multer实现图片上传
multer实现图片上传: ejs代码: <!DOCTYPE html> <html lang="en"> <head> <meta ch ...
- ES6 class 于 继承 extends
之前构造函数,没有类的概念,ES6中有了class类这个东西. 简单的一个例子: 输出: 需要注意的是,语法换了,但是构造函数.构造函数的原型.实例的关系还是那样. 输出: 需要注意写法: 底层还是p ...
- js对象转数组
1.Array.from() 方法,用于数组的浅拷贝.就是将一个类数组对象或者可遍历对象转换成一个真正的数组.eg: let obj = { 0: ‘nihao‘, 1: ‘haha‘, 2: ‘ga ...
- Redis 学习-Redis Sentinel
一.启动服务 1. 配置文件 sentinel.conf daemonize yes # 是否守护进程启动 pidfile "/var/run/redis-sentinel-26379.pi ...
- 【Zookeeper】应用场景概述
一.数据发布与订阅(配置中心) 二.负载均衡 三.命名服务(Naming Service) 四.分布式通知/协调 五.集群管理与Master选举 六.分布式锁 七.分布式事务 一.数据发布与订阅(配置 ...
- java利用MultipartRequest的getFileName方法不能得到原文件名问题
想利用MultipartRequest的getFileName方法来一次获取多个上传的文件名字时,得到的不是文件的名字,而是 input 的name属性 最后找到了答案,解决方法,参照http://s ...