[HNOI2008][bzoj 1005]明明的烦恼(prufer序列)
1005: [HNOI2008]明明的烦恼
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 7121 Solved: 2816
[Submit][Status][Discuss]
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
HINT
两棵树分别为1-2-3;1-3-2
题解:
树的计数题目,可以想到是用prufer序列来求解。
先来科普一下prufer的性质:
- 每个prufer序列都唯一对应着一棵树。
- prufer序列的长度等于它所对应的树的节点数-2。
- 每个数在prufer序列中出现的次数等于该节点在树中的度数-1。
其实有了这些性质我们就可以做题了(想要证明的自行度娘),现在我们在来观察一下这道题,如果他给出的是所有点的度数,那么这道题就是一个不全相异的全排列个数(戳这里),但是他给出的点的度数只是一部分的,那我们就可以先当别的点不存在,先把这一部分的方案数求出来,设$tot=\Sigma{d[i]-1}$,$tot$即为已经确定度数的点在prufer序列里所占的个数,这一部分方案数为$C_{n-2}^{tot}$,但是别忘了我们还要处理重复的部分,处理第一个数向$tot$个数中插的方案数为$C_{tot}^{d[1]-1}$,同理处理第二个数的方案数是$C_{tot-(d[1]-1)}^{d[2]-1}$,剩下的以此类推。
但是别忘了我们还有没确定度数的点,但是这很好处理,我们设未确定的点数为$cnt$,这就相当于在$n-2-tot$的空间中随便选$cnt$个,那么答案即为$cnt^{n-2-tot}$
然后我们根据乘法原理可以的出答案
$ans=C_{n-2}^{tot}*C_{tot}^{d[1]-1}*C_{tot-(d[1]-1)}^{d[2]-1}*\cdots*C_{d[i]-1}^{d[i]-1}*cnt^{n-2-tot}$
我们把组合数公式展开来一波化简就得到了结果
(数学公式崩了,凑或者看吧qwq)
这样再用一个高精就阔以了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
#define int long long
const int N=;
int d[N];
struct BigInt{
int m[N];
friend void operator *= (BigInt &a,int b){
int x=;
for(int i=;i<=a.m[];i++){
int y=a.m[i]*b+x;
a.m[i]=y%;
x=y/;
}
while(x){
a.m[++a.m[]]=x%;
x/=;
}
}
friend void operator /= (BigInt &a,int b){
int x=;
for(int i=a.m[];i>=;i--){
x+=a.m[i];
a.m[i]=x/b;
x%=b;
x*=;
}
while(a.m[a.m[]]==&&a.m[]>) a.m[]--;
}
friend void print(BigInt a){
for(int i=a.m[];i>=;i--) printf("%lld",a.m[i]);
puts("");
}
}x;
signed main(){
int n;
scanf("%lld",&n);
x.m[]=x.m[]=;
int cnt=,num=;
if(n==){
int k;
scanf("%lld",&k);
if(!k){puts("");}
else puts("");
return ;
}
for(int i=;i<=n;i++){
int mm;
scanf("%lld",&mm);
if(!mm){puts("");return ;}
if(mm==-) cnt++;
else {d[i]=mm-;num+=d[i];}
}
for(int i=;i<=n-;i++) x*=i;
//for(int i=1;i<=num;i++) x*=i;
//for(int i=2;i<=/*n-cnt-2*/num;i++) x*=i;
for(int i=;i<=n--num;i++) x*=cnt,x/=i;
for(int i=;i<=n;i++){
if(d[i]>){
for(int j=;j<=d[i];j++) x/=j;
}
}
print(x);
}
[HNOI2008][bzoj 1005]明明的烦恼(prufer序列)的更多相关文章
- BZOJ 1005 明明的烦恼(prufer序列+高精度)
有一种东西叫树的prufer序列,一个树的与一个prufer序列是一一对应的关系. 设有m个度数确定的点,这些点的度为dee[i],那么每个点在prufer序列中出现了dee[i]-1次. 由排列组合 ...
- BZOJ 1005 明明的烦恼 Prufer序列+组合数学+高精度
题目大意:给定一棵n个节点的树的节点的度数.当中一些度数无限制,求能够生成多少种树 Prufer序列 把一棵树进行下面操作: 1.找到编号最小的叶节点.删除这个节点,然后与这个叶节点相连的点计入序列 ...
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度
题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...
- [BZOJ]1005 明明的烦恼(HNOI2008)
BZOJ的第一页果然还是很多裸题啊,小C陆续划水屯些板子. Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间 ...
- BZOJ 1005 明明的烦恼
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...
- BZOJ 1005 明明的烦恼 (组合数学)
题解:n为树的节点数,d[ ]为各节点的度数,m为无限制度数的节点数. 则 所以要求在n-2大小的数组中插入tot各序号,共有种插法: 在tot各序号排列中,插第一个节点的 ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
随机推荐
- JavaScript - 过滤敏感字符
目录 before 源码示例 before 本篇博客展示了如何是在前端对铭感字符及一些特殊的命令做过滤. 好处是,少发一次请求,减少服器校验压力. 源码示例 <!DOCTYPE html> ...
- Vasya and Endless Credits CodeForces - 1107F (二分图完美匹配)
大意: n中贷款, 每种只能买一次, 第$i$种给$a_i$元, 要还款$k_i$个月, 每个月底还$b_i$元. 每个月可以在月初申请一种贷. 求某一时刻能得到的最大钱数.
- Windows 安装和配置 WSL
Windows 安装和配置 WSL 什么是 WSL 引用百度百科的一段话: Windows Subsystem for Linux(简称WSL)是一个为在Windows 10上能够原生运行Linux二 ...
- centos 服务器 发开防火墙端口
一.概述 在服务器上手动安装了某个软件,需要通过外部访问该软件(有对外开放端口),但是此时访问不通,此时检查,发现是该端口没有在防火墙开放,因此外界访问不了该服务器上的该软件对外提供的功能,基于此,需 ...
- 12-Perl 时间日期
1.Perl 时间日期本章节介绍 Perl 语言对时间日期的处理.Perl中处理时间的函数有如下几种: time() 函数:返回从1970年1月1日起累计的秒数 localtime() 函数:获取本地 ...
- sql使用临时表循环
code CREATE PROCEDURE sp_Update_Blogger_Blog_ArticleCount AS BEGIN declare @account varchar(); --博主账 ...
- gridview单元格编辑添加数据
行号 private void gridView1_CustomDrawRowIndicator(object sender, DevExpress.XtraGrid.Views.Grid.RowIn ...
- 题解 POJ1964/UVA1330/SP277 【City Game】
题目链接: https://www.luogu.org/problemnew/show/UVA1330 http://poj.org/problem?id=1964 https://www.luogu ...
- SpringMVC——正常访问静态文件,不要找不到静态文件报404的方法
方案一:激活Tomcat的defaultServlet来处理静态文件 <span style="font-size:12px;"> <servlet-mappin ...
- ——Java中的collection和collections的区别
1.java.util.Collection 是一个集合接口(集合类的一个顶级接口).它提供了对集合对象进行基本操作的通用接口方法.Collection接口在Java 类库中有很多具体的实现.Coll ...