Ubuntu14.04(indigo)实现RGBDSLAMv2(数据集和实时Kinect v2)

一、在.bag数据集上跑RGBDSLAMv2

RGBDSLAMv2指的是Felix Endres大神在2014年发表论文,实现的基于RGB-D 摄像头的SLAM系统,用于创建三维点云或者八叉树地图。

安装步骤重点参考原gitbub网址:https://github.com/felixendres/rgbdslam_v2

说明本人台式机硬件配置:

Intel(R)Core(TM)i5-6500 CPU @ 3.20GHz 3.20GHz;
RAM: 16.0GB;
GPU: NVIDIA GeForce GTX 1060 6GB。

1. 在Ubuntu14.04中安装ROS Indigo,参考网址:http://wiki.ros.org/cn/indigo/Installation/Ubuntu

2. 安装opencv2.4.9,参考网址:http://www.samontab.com/web/2014/06/installing-opencv-2-4-9-in-ubuntu-14-04-lts/

               http://blog.csdn.net/baoke485800/article/details/51236198

系统更新

sudo apt-get update
sudo apt-get upgrade

安装相关依赖包

sudo apt-get install build-essential libgtk2.-dev libjpeg-dev libtiff4-dev libjasper-dev libopenexr-dev cmake python-dev python-numpy python-tk libtbb-dev libeigen3-dev yasm libfaac-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev libqt4-dev libqt4-opengl-dev sphinx-common texlive-latex-extra libv4l-dev libdc1394--dev libavcodec-dev libavformat-dev libswscale-dev default-jdk ant libvtk5-qt4-dev

利用wget获得Opencv2.4.9源文件,等下载完成后解压

wget http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip
unzip opencv-2.4..zip
cd opencv-2.4.9

cmake编译安装opencv源文件包

mkdir build
cd build
cmake -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON -D WITH_VTK=ON ..
make -j4
sudo make install

配置opencv相关

sudo gedit /etc/ld.so.conf.d/opencv.conf

在打开的文件中(空文件也可)添加如下代码并保存

/usr/local/lib

执行以下代码

sudo ldconfig

打开另外一个文件

sudo gedit /etc/bash.bashrc

在文件末尾添加如下并保存退出

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

检查opencv是否安装成功

cd ~/opencv-2.4./samples/c
chmod +x build_all.sh
./build_all.sh
老版本的C语言接口
./facedetect --cascade="/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml"--scale=1.5 lena.jpg

./facedetect --cascade="/usr/local/share/OpenCV/haarcascades/haarcascade_frontalface_alt.xml"--nested-cascade="/usr/local/share/OpenCV/haarcascades/haarcascade_eye.xml" --scale=1.5 lena.jpg

新的C++接口

~/opencv-2.4./build/bin/cpp-example-grabcut ~/opencv-2.4./samples/cpp/lena.jpg

OK,测试成功。(更多测试详见上面参考网址)

opencv官网unix版本下载地址:https://sourceforge.net/projects/opencvlibrary/files/opencv-unix/

3. 安装pcl-1.7.2,使用github源码安装,地址:https://github.com/PointCloudLibrary/pcl

4. 创建catkin工作空间:

#为rgbdslam单独创建一个catkin工作空间

mkdir rgbdslam_catkin_ws
cd rgbdslam_catkin_ws
mkdir src
cd ~/rgbdslam_catkin_ws/src

#将其初始化为catkin工作空间的源码存放文件夹

catkin_init_workspace

#进入catkin工作空间目录

cd ~/rgbdslam_catkin_ws/

#编译新建的catkin工作空间,生成build、devel文件夹,形成完整的catkin工作空间

catkin_make

#调用终端配置文件

source devel/setup.bash

5. 源码安装g2o, 参考原gitbub网址:https://github.com/felixendres/rgbdslam_v2

6. 编译安装RGBDSLAMv2

#进入catkin工作空间的源码存放文件夹

cd ~/rgbdslam_catkin_ws/src

#下载github上对应ROS Indigo版本的rgbdslam源码

wget -q http://github.com/felixendres/rgbdslam_v2/archive/indigo.zip

#解压

unzip -q indigo.zip

#进入catkin工作空间目录

cd ~/rgbdslam_catkin_ws/

#ROS依赖包更新

rosdep update
yuanlibin@yuanlibin:~/rgbdslam_catkin_ws$ rosdep update
reading in sources list data from /etc/ros/rosdep/sources.list.d
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/osx-homebrew.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/base.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/python.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/rosdep/ruby.yaml
Hit https://raw.githubusercontent.com/ros/rosdistro/master/releases/fuerte.yaml
Query rosdistro index https://raw.githubusercontent.com/ros/rosdistro/master/index.yaml
Add distro "groovy"
Add distro "hydro"
Add distro "indigo"
Add distro "jade"
Add distro "kinetic"
Add distro "lunar"
updated cache in /home/yuanlibin/.ros/rosdep/sources.cache

#安装rgbdslam依赖包

rosdep install rgbdslam

正确运行后显示:#All required rosdeps installed successfully

#编译rgbdslam

catkin_make

正确运行后显示:[100%] Built target rgbdslam

source devel/setup.bash

最后运行

roslaunch rgbdslam rgbdslam.launch

会出现错误:

NODES
/
rgbdslam (rgbdslam/rgbdslam) ROS_MASTER_URI=http://localhost:11311 core service [/rosout] found
ERROR: cannot launch node of type [rgbdslam/rgbdslam]: rgbdslam
ROS path []=/opt/ros/indigo/share/ros
ROS path []=/opt/ros/indigo/share
ROS path []=/opt/ros/indigo/stacks
No processes to monitor
shutting down processing monitor...
... shutting down processing monitor complete

解决方法是将工作空间的路径加到 .bashrc 文件中,如本电脑示例::

echo "source /home/yuanlibin/rgbdslam_catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

至此,RGBDSLAMv2已编译安装完成。

7. 下载TUM的.bag数据集文件,下载地址:https://vision.in.tum.de/data/datasets/rgbd-dataset/download

例如:rgbd_dataset_freiburg1_xyz.bag

查看.bag数据集的信息:

终端1

roscore

终端2

rosbag play rgbd_dataset_freiburg1_xyz.bag

终端3

rostopic info

最后的命令不要按enter键按tab键进行查看

yuanlibin@yuanlibin:~$ rostopic info /
/camera/depth/camera_info /cortex_marker_array
/camera/depth/image /imu
/camera/rgb/camera_info /rosout
/camera/rgb/image_color /rosout_agg
/clock /tf
yuanlibin@yuanlibin:~$

然后修改路径:/home/yuanlibin/rgbdslam_catkin_ws/src/rgbdslam_v2-indigo/launch下的rgbdslam.launch文件

其中第8、9行的输入数据设置

   <param name="config/topic_image_mono"              value="/camera/rgb/image_color"/>
<param name="config/topic_image_depth" value="/camera/depth_registered/sw_registered/image_rect_raw"/>

需要修改为上述数据集相应的信息,修改如下:

   <param name="config/topic_image_mono"              value="/camera/rgb/image_color"/>
<param name="config/topic_image_depth" value="/camera/depth/image"/>

在该文件中可以修改系统使用的特征:

SIFT, SIFTGPU, SURF, SURF128 (extended SURF), ORB.

8. 在数据集上跑RGBDSLAMv2

终端1

roscore

终端2

rosbag play rgbd_dataset_freiburg1_xyz.bag

终端3

roslaunch rgbdslam rgbdslam.launch

最后,就可以看到在数据集上运行RGBDSLAMv2重建的三维点云图了。

二、基于Kinect v1实时运行RGBDSLAMv2

1. 进行ROS indigo下Kinect v1的驱动安装与调试,可参考:http://www.cnblogs.com/yuanlibin/p/8608190.html

2. 在终端执行以下命令:

终端1

roscore

终端2

roslaunch rgbdslam openni+rgbdslam.launch

3. 移动Kinect v1,就可以看到实时重建的三维点云了。

三、基于Kinect v2实时运行RGBDSLAMv2

1. 运行Kinect v2 查看其输出数据信息:

终端1

roslaunch kinect2_bridge kinect2_bridge.launch

终端2(输入命令rostopic info后,不要按enter,要按table键进行查看)

yuanlibin@yuanlibin:~$ rostopic info /
/kinect2/bond
/kinect2/hd/camera_info
/kinect2/hd/image_color
/kinect2/hd/image_color/compressed
/kinect2/hd/image_color_rect
/kinect2/hd/image_color_rect/compressed
/kinect2/hd/image_depth_rect
/kinect2/hd/image_depth_rect/compressed
/kinect2/hd/image_mono
/kinect2/hd/image_mono/compressed
/kinect2/hd/image_mono_rect
/kinect2/hd/image_mono_rect/compressed
/kinect2/hd/points
/kinect2/qhd/camera_info
/kinect2/qhd/image_color
/kinect2/qhd/image_color/compressed
/kinect2/qhd/image_color_rect
/kinect2/qhd/image_color_rect/compressed
/kinect2/qhd/image_depth_rect
/kinect2/qhd/image_depth_rect/compressed
/kinect2/qhd/image_mono
/kinect2/qhd/image_mono/compressed
/kinect2/qhd/image_mono_rect
--More--

2. 在路径/home/yuanlibin/rgbdslam_catkin_ws/src/rgbdslam_v2-indigo/launch下新建一个rgbdslam_kinect2.launch文件,内容如下:

<launch>
<node pkg="rgbdslam" type="rgbdslam" name="rgbdslam" cwd="node" required="true" output="screen">
<!-- Input data settings-->
<param name="config/topic_image_mono" value="/kinect2/qhd/image_color_rect"/>
<param name="config/camera_info_topic" value="/kinect2/qhd/camera_info"/> <param name="config/topic_image_depth" value="/kinect2/qhd/image_depth_rect"/> <param name="config/topic_points" value=""/> <!--if empty, poincloud will be reconstructed from image and depth --> <!-- These are the default values of some important parameters -->
<param name="config/feature_extractor_type" value="ORB"/><!-- also available: SIFT, SIFTGPU, SURF, SURF128 (extended SURF), ORB. -->
<param name="config/feature_detector_type" value="ORB"/><!-- also available: SIFT, SURF, GFTT (good features to track), ORB. -->
<param name="config/detector_grid_resolution" value=""/><!-- detect on a 3x3 grid (to spread ORB keypoints and parallelize SIFT and SURF) --> <param name="config/optimizer_skip_step" value=""/><!-- optimize only every n-th frame -->
<param name="config/cloud_creation_skip_step" value=""/><!-- subsample the images' pixels (in both, width and height), when creating the cloud (and therefore reduce memory consumption) --> <param name="config/backend_solver" value="csparse"/><!-- pcg is faster and good for continuous online optimization, cholmod and csparse are better for offline optimization (without good initial guess)--> <param name="config/pose_relative_to" value="first"/><!-- optimize only a subset of the graph: "largest_loop" = Everything from the earliest matched frame to the current one. Use "first" to optimize the full graph, "inaffected" to optimize only the frames that were matched (not those inbetween for loops) --> <param name="config/maximum_depth" value=""/>
<param name="config/subscriber_queue_size" value=""/> <param name="config/min_sampled_candidates" value=""/><!-- Frame-to-frame comparisons to random frames (big loop closures) -->
<param name="config/predecessor_candidates" value=""/><!-- Frame-to-frame comparisons to sequential frames-->
<param name="config/neighbor_candidates" value=""/><!-- Frame-to-frame comparisons to graph neighbor frames-->
<param name="config/ransac_iterations" value=""/> <param name="config/g2o_transformation_refinement" value=""/>
<param name="config/icp_method" value="gicp"/> <!-- icp, gicp ... --> <!--
<param name="config/max_rotation_degree" value=""/>
<param name="config/max_translation_meter" value="0.5"/> <param name="config/min_matches" value=""/> <param name="config/min_translation_meter" value="0.05"/>
<param name="config/min_rotation_degree" value=""/>
<param name="config/g2o_transformation_refinement" value=""/>
<param name="config/min_rotation_degree" value=""/> <param name="config/matcher_type" value="ORB"/>
-->
</node>
</launch>

注意第3、4、5、7行的输入数据设置,应与上面查看到的信息一致。

在该文件中可以修改系统使用的特征:

SIFT, SIFTGPU, SURF, SURF128 (extended SURF), ORB.

3. 最后基于Kinect v2的实时运行RGBDSLAMv2

终端1

roslaunch rgbdslam rgbdslam_kinect2.launch

终端2

roslaunch kinect2_bridge kinect2_bridge.launch

缓慢移动Kinect v2,就可以看到实时重建的三维点云了。自己实现的三维点云截图如下:

图1所示为实验室工位的全景三维点云图;

图2所示为全景图中红点处的侧视图。

图1. 实验室工位的全景三维点云图

图2. 全景图中红点处的侧视图

Ubuntu14.04(indigo)实现RGBDSLAMv2(数据集和实时Kinect)的更多相关文章

  1. Ubuntu14.04下沙盒数据导入到 Neo4j 数据库(图文详解)

    不多说,直接上干货! 参考博客 http://blog.csdn.net/u012318074/article/details/72793914   (表示感谢) 前期博客 Neo4j沙盒实验申请过程 ...

  2. ubuntu14.04 and ros indigo install kinect driver--16

    摘要: 原创博客:转载请表明出处:http://www.cnblogs.com/zxouxuewei/ 今日多次测设ros indigo install kinect driver ,提示各种失败,然 ...

  3. ubuntu14.04 rabbitmq安装与使用 --修改RabbitMQ数据存储位置

    参考:https://blog.csdn.net/tianjiewang/article/details/58383062 说明: ubuntu14.04   rabiitmq 默认 安装路径 /va ...

  4. Ubuntu14.04+RabbitMQ3.6.3+Golang的最佳实践

    目录 [TOC] 1.RabbitMQ介绍 1.1.什么是RabbitMQ?   RabbitMQ 是由 LShift 提供的一个 Advanced Message Queuing Protocol ...

  5. Ubuntu14.04用apt在线/离线安装CDH5.1.2[Apache Hadoop 2.3.0]

    目录 [TOC] 1.CDH介绍 1.1.什么是CDH和CM? CDH一个对Apache Hadoop的集成环境的封装,可以使用Cloudera Manager进行自动化安装. Cloudera-Ma ...

  6. 通过rsync+inotify实现数据的实时备份

    我讲到过利用rsync实现数据的镜像和备份,但是要实现数据的实时备份,单独靠rsync还不能实现,本文就讲述下如何实现数据的实时备份. 一.rsync的优点与不足 与传统的cp.tar备份方式相比,r ...

  7. 【一】Ubuntu14.04+Jekyll+Github Pages搭建静态博客

    本系列有五篇:分别是 [一]Ubuntu14.04+Jekyll+Github Pages搭建静态博客:主要是安装方面 [二]jekyll 的使用 :主要是jekyll的配置 [三]Markdown+ ...

  8. Ubuntu14.04 Django Mysql安装部署全过程

    Ubuntu14.04 Django Mysql安装部署全过程   一.简要步骤.(阿里云Ubuntu14.04) Python安装 Django Mysql的安装与配置 记录一下我的部署过程,也方便 ...

  9. Caffe+CUDA7.5+CuDNNv3+OpenCV3.0+Ubuntu14.04 配置参考文献 以及 常见编译问题总结

    Caffe+CUDA7.5+CuDNNv3+OpenCV3.0+Ubuntu14.04  配置参考文献 ---- Wang Xiao Warning: Please make sure the cud ...

随机推荐

  1. 【web】Chrome 浏览器中查看 webSocket 连接信息

    1.以下代码实现一个webSocket连接,在文本输入框中输入内容,点击发送,通过服务器,返回相同的内容显示在下方. 1 <!DOCTYPE html> 2 <html lang=& ...

  2. sql 基础语句

    一.基础  2  31.说明:创建数据库  4Create DATABASE database-name  5  62.说明:删除数据库  7drop database dbname  8  93.说 ...

  3. GraphQL实战篇(一)

    看过基础篇的都知道,GraphQL创建Schema有两种方式,Schema First和Graph Type,前者使用GraphQL Schema Language类似于EF的DB First:后者和 ...

  4. Apache ---- Solrl漏洞复现

    Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口.用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引:也可以通过Http Get操 ...

  5. Java中的ThreadLocal详解

    一.ThreadLocal简介 多线程访问同一个共享变量的时候容易出现并发问题,特别是多个线程对一个变量进行写入的时候,为了保证线程安全,一般使用者在访问共享变量的时候需要进行额外的同步措施才能保证线 ...

  6. 定义Java类实现字节流转字符流

    package com.buaa.comparable; import java.io.BufferedReader;import java.io.File;import java.io.FileIn ...

  7. html5+css3 background-clip 技巧

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. Computer Vision_18_Image Stitching: Image Alignment and Stitching A Tutorial——2006(book)

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Image Processing and Analysis_8_Edge Detection:Design of steerable filters for feature detection using canny-like criteria ——2004

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  10. 跟着minium官网介绍学习minium-----(三)

    注意:程序运行时在微信开发者工具当前页面为主,而不是每次运行都是从home页面开始 一 获取单个元素 get_element():在当前页面查询控件, 如果匹配到多个结果, 则返回第一个匹配到的结果 ...