此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面。对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献。有一些刚刚出版的文章,个人非常喜欢,也列出来了。

33. SIFT
关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了。SURF和PCA-SIFT也是属于这个系列。后面列出了几篇跟SIFT有关的问题。
[1999 ICCV] Object recognition from local scale-invariant features
[2000 IJCV] Evaluation of Interest Point Detectors
[2006 CVIU] Speeded-Up Robust Features (SURF)
[2004 CVPR] PCA-SIFT A More Distinctive Representation for Local Image Descriptors
[2004 IJCV] Distinctive Image Features from Scale-Invariant Keypoints

[2009 GRSL] Robust scale-invariant feature matching for remote sensing image registration
[2010 IJCV] Improving Bag-of-Features for Large Scale Image Search
[2011 PAMI] SIFTflow Dense Correspondence across Scenes and its Applications

[2014 CVPR] TILDE: A Temporally Invariant Learned DEtector

[2015 TGRS] SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES

[2017 GRSL] Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching

[2017 CVPR] GMS :Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence

 

翻译

鲁棒的尺度不变特征匹配,用于遥感图像配准

作者:Qiaoliang Li, Guoyou Wang, Jianguo Liu

摘要

-在遥感图像配准中采用尺度不变特征变换(SIFT)时,由于遥感图像之间的图像强度与可见图像相比存在显着差异,因此会出现许多关键点的不正确匹配。提出了尺度定向联合约束准则,以实现遥感影像关键点的鲁棒特征匹配。此外,还对每个关键点的特征描述符进行了改进,以克服远程图像对之间的梯度强度和方向差异。多日期,多光谱和多传感器远程图像的实验结果表明,与基于强度和基于SIFT的方法相比,该方法在正确匹配率和对齐精度方面提高了匹配性能。

索引词-特征匹配,图像配准,尺度不变特征变换(SIFT),尺度定向联合限制条件。

Ⅰ 引言

图像配准[1]是远程图像分析任务中至关重要的一步,例如远程图像融合,环境监视,变更检测,地图更新等。已经提出了许多方法来使远程图像配准过程自动化。这些方法可以概括为以下两类。

1)基于像素强度的方法:这些方法中使用的最具代表性的相似性度量是互相关(CC)[1]和互信息[2](MI)。但是,当图像对之间存在较大的旋转或缩放位移时,基于CC的方法就无法胜任,而基于MI的方法由于全局优化的高度计算复杂性而不适用于实时应用。
2)基于图像特征的方法:这些技术从图像中提取诸如边缘[3],角[4],轮廓[5]和特定区域的质心[6]之类的特征,并使用这些特征之间的相关性来确定图像之间的最佳对齐。但是,仅使用某些稀疏功能就无法保证鲁棒性。这些算法中通常需要人工协助,否则正确匹配率(CMT)会相对较低。

直到今天,自动配准具有大位移,旋转和缩放比例的遥感影像仍然是一个挑战。近年来,尺度不变特征变换(SIFT)[7]由于其良好的特性(对图像缩放和旋转不变,并且对照明和摄像机视点的变化不变)具有良好的特性,因此已成功地应用于可见图像的配准和识别。此外,PCA-SIFT [8],CSIFT [9]和GLOH [10]对SIFT进行了相关改进以使其更有效。但是,当我们采用这些基于SIFT的方法来对准遥感图像时,会出现很多错误的关键点匹配;因此,CMT急剧下降。根本原因是,由于拍摄时间,光谱和捕获设备中使用的传感器的不同,远程图像对的同一区域的像素强度可能会显着不同,并且图像对之间的强度映射可能是线性的,非线性且不稳定(图1)。为了克服这个问题,Yi等人[11]提出了SR-SIFT,其中将尺度限制标准引入特征匹配过程。他们声称改进了可见光和红外图像的匹配性能。但是,当成像设备的光谱和传感器之间存在显着差异时,图像对的SR-SIFT的CMT也会明显降低。

为了实现遥感影像关键点的尺度不变特征的鲁棒匹配,我们提出了尺度取向联合限制准则,以排除大量不正确的关键点匹配。此外,还针对远程图像完善了每个关键点的特征描述符。与基于强度的配准算法和SR-SIFT相比,该算法在保持较高对准精度的同时,极大地提高了远程图像的CMT。由于在大多数应用情况下,可以通过“形状保留映射” [1](仅平移,旋转和缩放)对遥感影像中发现的几何失真进行建模,而不会产生较大误差,因此我们采用此简单模型来估算两个关键点集之间的转换参数,以实现更好的计算性能。如有必要,还可以在配准算法中使用诸如透视模型之类的更复杂的模型。

Computer Vision_33_SIFT:Robust scale-invariant feature matching for remote sensing image registration——2009的更多相关文章

  1. Computer Vision_33_SIFT:LIFT: Learned Invariant Feature Transform——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  2. Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Computer Vision_33_SIFT:An Improved RANSAC based on the Scale Variation Homogeneity——2016

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  4. Computer Vision_33_SIFT:SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  5. Computer Vision_33_SIFT: A novel point-matching algorithm based on fast sample consensus for image registration——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:Fast Adaptive Bilateral Filtering——2018

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:An efficient SIFT-based mode-seeking algorithm for sub-pixel registration of remotely sensed images——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:ORB_An efficient alternative to SIFT or SURF——2012

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. 123457123457#0#-----com.tym.YuErBaiKeTYM--前拼后广--育儿百科

    com.tym.YuErBaiKeTYM--前拼后广--育儿百科

  2. 报错:(未解决)Opening socket connection to server master/192.168.52.26:2181. Will not attempt to authenticate using SASL (unknown error)

    报错背景: CDH集群中,将kafka和Flume整合,将kafka的数据发送给Flume消费. 启动kafka的时候正常,但是启动Flume的时候出现了报错现象. 报错现象: DH--.cdh5./ ...

  3. spring 理解Spring AOP 一个简单的约定游戏

    应该说AOP原理是Spring技术中最难理解的一个部分,而这个约定游戏也许会给你很多的帮助,通过这个约定游戏,就可以理解Spring AOP的含义和实现方法,也能帮助读者更好地运用Spring AOP ...

  4. Nginx配置自定义的403页面

    1.开启nginx的状态码,虚拟主机配置中加入下边一段 location /nginx_status{ stub_status on; access_log off; } 或着在nginx的http模 ...

  5. 模仿系统C键功能菜单

    1.可以拖拽C键 2.依赖zepto 3.点击弹出菜单 效果预览:

  6. 高级UI-自定义动画框架

    有的时候会需要做一些自定义的动画效果,在会反复用到的动画效果可以考虑做成动画框架,方便使用,做成框架的话就需要考虑很多的问题,最典型的问题就是属性和方法必须要是可配置的,这里就来聊一聊自定义动画框架的 ...

  7. C# 基于Directshow.Net lib库 USB摄像头使用DirectShow.NET获取摄像头视频流

    https://blog.csdn.net/u010118312/article/details/91766787 https://download.csdn.net/download/u010118 ...

  8. Flask项目中使用mysql数据库启动项目是发出警告

    Flask项目中使用mysql数据库启动项目是发出警告: Warning: (1366, "Incorrect string value: '\xD6\xD0\xB9\xFA\xB1\xEA ...

  9. htm5手机端实现拖动图片

    htm5手机端实现拖动图片 <pre> <!doctype html><html><head> <title>Mobile Cookbook ...

  10. 【leetcode算法-简单】7.整数反转

    [题目描述] 给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123输出: 321 示例 2: 输入: -123输出: -321 示例 3: 输入: 12 ...