sigmoid.m文件

function g = sigmoid(z)
%SIGMOID Compute sigmoid functoon
% J = SIGMOID(z) computes the sigmoid of z.

g = zeros(size(z));  初始化g ,z可以是一个数,一个向量或者一个矩阵

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the sigmoid of each value of z (z can be a matrix, vector or scalar)
Ones = ones(size(z));
g = Ones./(Ones + exp((-1).*z));  计算,g(z)的值域在[0,1]之间,符合概率的分布.

当z=0时,g=0.5; 当z<0时,g<0.5;当z>0时,g>0.5;

当z->-∞时,g->0; 当z->+∞时,g->1

z可以是一个数,一个向量或者是一个矩阵

% =============================================================

end

costFunction.m

function [J, grad] = costFunction(theta, X, y)
%COSTFUNCTION Compute cost and gradient for logistic regression
% J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
% parameter for logistic regression and the gradient of the cost
% w.r.t. to the parameters.

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));  %grad的维数与theta的一至

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Note: grad should have the same dimensions as theta
%

J(θ)的表达式      

grad的表达式

J = 1/m*(-1*y'*log(sigmoid(X*theta)) - (ones(1,m)-y')*log(ones(m,1)-sigmoid(X*theta)));    %logM是对矩阵的每个元素都是求log, exp(M)同样是表示对矩阵的每                                                                                                                                        个元素求e的底

调用的函数参见上述函数sigmoid.m

grad = 1/m * (X' * (sigmoid(X*theta) - y));,

% =============================================================

end

%% ============ Part 2: Compute Cost and Gradient ============
% In this part of the exercise, you will implement the cost and gradient
% for logistic regression. You neeed to complete the code in
% costFunction.m

% Setup the data matrix appropriately, and add ones for the intercept term
[m, n] = size(X);  %求x矩阵的维数

% Add intercept term to x and X_test
X = [ones(m, 1) X];  %X矩阵左侧加一列1,用来匹配常数量

% Initialize fitting parameters
initial_theta = zeros(n + 1, 1);

% Compute and display initial cost and gradient
[cost, grad] = costFunction(initial_theta, X, y);   %参见上述文件costFunction.m

fprintf('Cost at initial theta (zeros): %f\n', cost);
fprintf('Gradient at initial theta (zeros): \n');
fprintf(' %f \n', grad);

fprintf('\nProgram paused. Press enter to continue.\n');
pause;

matlab(3) Logistic Regression: 求cost 和gradient \ 求sigmoid的值的更多相关文章

  1. matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary

    画decision boundary(直线) %% ============= Part 3: Optimizing using fminunc =============% In this exer ...

  2. matlab(2) Logistic Regression: 画出样本数据点plotData

    画出data数据 data数据 34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.84740876 ...

  3. SVM: 相对于logistic regression而言SVM的 cost function与hypothesis

    很多学习算法的性能都差不多,关键不是使用哪种学习算法,而是你能得到多少数据量和应用这些学习算法的技巧(如选择什么特征向量,如何选择正则化参数等) SVM在解决非线性问题上提供了强大的方法. logis ...

  4. Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

    原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  5. 机器学习-- Logistic回归 Logistic Regression

    转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...

  6. 编程作业2.2:Regularized Logistic regression

    题目 在本部分的练习中,您将使用正则化的Logistic回归模型来预测一个制造工厂的微芯片是否通过质量保证(QA),在QA过程中,每个芯片都会经过各种测试来保证它可以正常运行.假设你是这个工厂的产品经 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  8. Logistic Regression 笔记与理解

    Logistic Regression 笔记与理解 Logistic Regression Hypothesis 记为 H(theta) H(theta)=g(z) 当中g(z),是一个叫做Logis ...

  9. machine learning(10) -- classification:logistic regression cost function 和 使用 gradient descent to minimize cost function

    logistic regression cost function(single example) 图像分布 logistic regression cost function(m examples) ...

随机推荐

  1. Linux文件误删恢复

    一.需求研究 分析对比debugfs.testdisk 6.14.extundelete,对比各自官网介绍和操作说明本次决定研究extundelete对文件和目录的恢复操作. 二.项目内容 1.工具安 ...

  2. Java注解-注解处理器、servlet3.0|乐字节

    大家好,我是乐字节的小乐,上次给大家带来了Java注解-元数据.注解分类.内置注解和自定义注解|乐字节,这次接着往下讲注解处理器和servlet3.0 一.注解处理器 使用注解的过程中,很重要的一部分 ...

  3. Pytorch 网络结构可视化

    安装 conda install graphvizconda install tensorwatch 载入库 import sysimport torchimport tensorwatch as t ...

  4. Session中清除对象方法比较

    转载. https://blog.csdn.net/u014401141/article/details/51816308 Session中清除对象方法比较   http://blog.csdn.ne ...

  5. (二)linux 学习 -- 探究操作系统

    The Linux Command Line 读书笔记 - 部分内容来自 http://billie66.github.io/TLCL/book/chap04.html 文章目录 ls 命令进阶 `l ...

  6. 常用算法之排序(Java)

    一.常用算法(Java实现) 1.选择排序(初级算法) 原理:有N个数据则外循环就遍历N次并进行N次交换.内循环实现将外循环当前的索引i元素与索引大于i的所有元素进行比较找到最小元素索引,然后外循环进 ...

  7. SQL Server2008存储过程中函数的用法(举例)

    USE   数据库 GO SET ANSI_NULLS ONGOSET QUOTED_IDENTIFIER ONGO CREATE   function  函数名称 (@EmpID   nvarcha ...

  8. Jquery DataTables 服务器后端分页 Ajax请求添加自定义参数.

    项目使用AdminLTE(基于Bootstrap 二次开发的框架)作为开发框架. 使用DataTables 的时候部分页面需要传参 给后台做筛选过滤. 但是不知道怎么将DataTables的参数 和自 ...

  9. vue单页面应用加入百度统计

    版权声明:本文为CSDN博主「钟文辉」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/qq_39753974/a ...

  10. Git撤回已经推送(push)至远程仓库提交(commit)的版本

    背景 所以,经常会遇到已经提交远程仓库,但是又不是我想要的版本,要撤下来. 回退版本一般使用git reset,又分为: # 不删除工作空间改动代码,撤销commit,不撤销git add . git ...