HDU.2829.Lawrence(DP 斜率优化)
\(Description\)
给定一个\(n\)个数的序列,最多将序列分为\(m+1\)段,每段的价值是这段中所有数两两相乘的和。求最小总价值。
\(Solution\)
写到这突然懒得写了。。
丢个题解走人
/*
朴素O(n^3):f[i][j]表示当前在i分了j段的最小价值 W[i]表示1~i的总价值 S[i]表示1~i的原序列值之和
则有 f[i][j]=min{ f[k][j-1]+W[i]-W[k]-S[i]*(S[i]-S[k]) } (1≤k<i)
这个方程可以用斜率优化 不过好像首先有个决策单调
也可以用四边形不等式优化做
*/
#include<cstdio>
#include<cctype>
#define gc() getchar()
typedef long long LL;
const int N=1e3+5;
int n,m,A[N],q[N];
LL W[N],S[N],f[N][2];
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
}
inline LL Calc_X(int x,int y)
{
return S[x]-S[y];
}
inline LL Calc_Y(int x,int y,int s)
{
return (f[x][s]+S[x]*S[x]-W[x])-(f[y][s]+S[y]*S[y]-W[y]);
}
inline LL Calc_f(int x,int y,int s)
{
return f[x][s]+W[y]-W[x]-S[x]*(S[y]-S[x]);
}
int main()
{
while(n=read(),m=read(),n&&m)
{
S[0]=W[0]=0;
for(int i=1;i<=n;++i)
A[i]=read(), S[i]=S[i-1]+A[i], W[i]=W[i-1]+A[i]*S[i-1];
for(int i=1;i<=n;++i) f[i][0]=W[i];
int p=1;
for(int h,t,j=1;j<=m;++j)//至多分m+1段
{
h=t=1, q[1]=0;//i从0转移就是W[i]
p^=1;
for(int i=1;i<=n;++i)
{
while(h<t && Calc_Y(q[h+1],q[h],p)<S[i]*Calc_X(q[h+1],q[h]))//决策单调 所以对于当前i不会成为最优值的,之后都不会成为最优值
++h;
f[i][p^1]=Calc_f(q[h],i,p);
while(h<t && Calc_Y(i,q[t],p)*Calc_X(q[t],q[t-1]) <= Calc_Y(q[t],q[t-1],p)*Calc_X(i,q[t]))//维护队尾下凸包性质
--t;
q[++t]=i;
}
}
printf("%lld\n",f[n][p^1]);
}
return 0;
}
HDU.2829.Lawrence(DP 斜率优化)的更多相关文章
- HDU 2829 [Lawrence] DP斜率优化
解题思路 首先肯定是考虑如何快速求出一段铁路的价值. \[ \sum_{i=1}^k \sum_{j=1, j\neq i}^kA[i]A[j]=(\sum_{i=1}^kA[i])^2-\sum_{ ...
- HDU 2829 Lawrence(斜率优化DP O(n^2))
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2829 题目大意:有一段铁路有n个站,每个站可以往其他站运送粮草,现在要炸掉m条路使得粮草补给最小,粮草 ...
- HDU 3480 Division DP斜率优化
解题思路 第一步显然是将原数组排序嘛--然后分成一些不相交的子集,这样显然最小.重点是怎么分. 首先,我们写出一个最暴力的\(DP\): 我们令$F[ i ][ j ] $ 为到第\(i\)位,分成\ ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- HDU 2829 Lawrence (斜率DP)
斜率DP 设dp[i][j]表示前i点,炸掉j条边的最小值.j<i dp[i][j]=min{dp[k][j-1]+cost[k+1][i]} 又由得出cost[1][i]=cost[1][k] ...
- hdu 2829 Lawrence(斜率优化DP)
题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- HDU 3507 单调队列 斜率优化
斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...
随机推荐
- 【逆向知识】GitHub:Awesome-Hacking(黑客技能列表-逆向)
0 初衷 GitHub这一份黑客技能列表很不错,包含了多个方向的安全.但目前我关注只有逆向工程与恶意代码,所以其他的被暂时略过. 虽然很感谢作者的辛勤付出,但并不打算复制粘贴全套转载.逐条整理是为了从 ...
- ImageNet Classification with Deep Convolutional Neural Networks(译文)转载
ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...
- DDR3基本知识及测试【转】
转自:http://blog.csdn.net/myarrow/article/details/7847385 一.DDR3简介 DDR3(double-data-rate three synchro ...
- java并发编程系列二:原子操作/CAS
什么是原子操作 不可被中断的一个或者一系列操作 实现原子操作的方式 Java可以通过锁和循环CAS的方式实现原子操作 CAS( Compare And Swap ) 为什么要有CAS? Compar ...
- oracle 远程导入导出(本地win)
导出 exp hongtastock_account/hongtastock_account@192.168.1.22/orcl file=D:\hongta\hongtastock_account. ...
- SharePoint 2013 Workflow Manager 1.0 远程服务器返回错误: (400) 错误的请求。 不支持查询字符串中的 api-version
环境: Windows Server 2012 R2 Standard SharePoint Server 2013 with sp1 通过Web 平台安装程序 5.0,已安装 Workflow Ma ...
- oracle instantclient_11_2 配置文件tnsnames.ora
文件所在位置(不同版本位置可能不同): oracle\product\10.2.0\client_1\NETWORK\ADMIN\tnsnames.ora WDDB = (DESCRIPTION = ...
- 反向代理负载均衡之APACHE
反向代理负载均衡之APACHE 一.反向代理1.1 介绍反响代理 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将 ...
- CSS伪元素before、after妙用
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- JavaScript对象简介(一)
本节介绍js的9个对象:Array数组对象 Boolean(true false) Date日前对象 Math 数学对象 Number 数字对象 String 字符串对象 RegExp 正则表达式对象 ...