bzoj 4767: 两双手 组合 容斥
题目链接
题解
不共线向量构成一组基底
对于每个点\((X,Y)\)构成的向量拆分
也就是对于方程组
$Ax * x + Bx * y = X \(
\)Ay * x + By * y = Y\(
\)x,y\(不能为负问题转化为NE lattice path
\)f(i)\(表示从0到i点不经过障碍的方案数
枚举第一个碰到的障碍点
\)f(i) = cnt(0,i) - \sum_j dp[j] cnt(j,i)$
\(cnt(x,y)\)为从点x到y的方案数
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define gc getchar()
#define pc putchar
inline int read() {
int x = 0,f = 1;
char c = gc;
while(c < '0' || c > '9') {if(c == '-') f = -1 ; c = gc; }
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f;
}
void print(int x) {
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
#define int long long
const int maxn = 507;
const int M = 500000;
const int mod = 1e9 + 7;
int Ex,Ey,n;
int Ax,Ay,Bx,By;
int f[maxn];
struct Node {
int x,y;
bool operator < (const Node a) const {
return x == a.x ? y < a.y : x < a.x;
}
} p[maxn];
int fac[M + 7],inv[M + 7];
inline int fstpow(int x,int k) {
int ret = 1;
for(;k;k >>= 1,x = 1ll * x * x % mod)
if(k & 1) ret = 1ll * ret * x % mod;
return ret;
}
inline void calc(int &x,int &y) {
int a1 = x * By - y * Bx,a2 = Ax * By - Ay * Bx;
int b1 = x * Ay - Ax * y,b2 = Bx * Ay - Ax * By;
if(!a2 || !b2) {x = y = -1;return; }
if((a1 % a2) || (b1 % b2)) {x = y = -1;return; }
x = a1 / a2,y = b1 / b2;
}
inline int C(int x,int y){
if(x < y) return 0;
return 1ll * fac[x] * inv[y] % mod * inv[x - y] % mod;
}
main() {
fac[0] = fac[1] = 1;
for(int i = 1;i <= M;++ i) fac[i] = 1ll * fac[i - 1] * i % mod;
inv[0] = 1;
inv[M] = fstpow(fac[M],mod - 2);
for(int i = M - 1;i >= 1;-- i) inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
Ex = read(),Ey = read(),n = read();
Ax = read(),Ay = read(),Bx = read(),By = read();
calc(Ex,Ey);
for(int i = 1;i <= n;++ i) {
p[i].x = read(),p[i].y = read();
calc(p[i].x,p[i].y);
if(p[i].x < 0 || p[i].y < 0 || p[i].x > Ex || p[i].y > Ey) n --,i --;
}
p[0].x = p[0].y = 0;
p[++ n].x = Ex,p[n].y = Ey;
std::sort(p + 1,p + n + 1);
for(int i = 1;i <= n;++ i) {
f[i] = C(p[i].x + p[i].y,p[i].x);
if(f[i] == 0) continue;
for(int j = 1;j < i;++ j) {
f[i] -= (1ll * f[j] * C(p[i].x - p[j].x + p[i].y - p[j].y,p[i].x - p[j].x)) % mod;
f[i] %= mod;
f[i] += mod ;
f[i] %= mod;
}
}
print(f[n]);
return 0;
}
bzoj 4767: 两双手 组合 容斥的更多相关文章
- BZOJ.4767.两双手(组合 容斥 DP)
题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...
- bzoj 4767 两双手 - 动态规划 - 容斥原理
题目传送门 传送门I 传送门II 题目大意 一个无限大的棋盘上有一只马,设马在某个时刻的位置为$(x, y)$, 每次移动可以将马移动到$(x + A_x, y + A_y)$或者$(x + B_x, ...
- BZOJ 4767 两双手
题解: 发现这种题目虽然可以想出来,但磕磕碰碰得想挺久的 根据数学可以知道组成方案是唯一的(集合) 然后发现每个使用的大小可能是接近n^2的 直接dp(n^4)是过不了的 那么先观察观察 我们可以把每 ...
- BZOJ 4767: 两双手 [DP 组合数]
传送门 题意: 给你平面上两个向量,走到指定点,一些点不能经过,求方案数 煞笔提一开始被题面带偏了一直郁闷为什么方案不是无限 现在精简的题意.....不就是$bzoj3782$原题嘛,还不需要$Luc ...
- 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1057 Solved: 318[Submit][Status][Discuss] ...
- [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】
题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- BZOJ.4558.[JLOI2016]方(计数 容斥)
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\) ...
- [BZOJ 3198] [Sdoi2013] spring 【容斥 + Hash】
题目链接:BZOJ - 3198 题目分析 题目要求求出有多少对泉有恰好 k 个值相等. 我们用容斥来做. 枚举 2^6 种状态,某一位是 1 表示这一位相同,那么假设 1 的个数为 x . 答案就是 ...
随机推荐
- java中网络设置代理
三种方式: 1.JVM启动时加参数设置代理 在系统启动时,使用-D项来设置代理. 例如: java -Dhttp.ProxyHost="proxyUrl" -Dhttp.Proxy ...
- freeRTOS中文实用教程3--中断管理之计数信号量
1.前言 在中断不频繁的系统中,使用二值信号量没有问题,但是中断频繁发生时,则会有中断丢失的问题. 因为中断发生时延迟任务执行,延迟任务执行的过程中,如果又来了两次中断,则只会处理第一次,第二次将会丢 ...
- 在全志平台调试博通的wifi驱动(类似ap6212)【转】
转自:http://blog.csdn.net/fenzhi1988/article/details/44809779 调试驱动之前,首先先看看驱动代码,了解代码大致工作流程,再根据硬件配置驱动,比如 ...
- MVC 带扩展名的路由无法访问
在MVC中,路由是必不可少的,而且MVC对Url的重写非常方便,只需要在路由中配置相应的规则即可.假如我们需要给信息详情页配置路由,代码如下: routes.MapRoute( name: " ...
- Android开源动画库nineoldandroids
项目官网地址:http://nineoldandroids.com/ 使用这个库的原因是android3.0之后出了新的animation API,但是android3.0以下的不支持 这个库完成了这 ...
- Nodejs实现WebSocket通信demo
一.创建websocket.js文件 步骤: 1.创建websocket.js文件,复制如下代码: 2.安装nodejs-websocket依赖: 3.该文件夹下命令行执行 node websocke ...
- Numpy详解
NumPy 简介 Python并没有提供数组功能.虽然列表可以完成基本的数组功能,但它不是真正的数组,而且在数据量比较大时,使用列表的速度会很慢.为此,Numpy提供了真正的数组功能,以及对数据进行快 ...
- 一个简单 JDK 动态代理的实例
动态代理的步骤: 创建一个实现了 InvocationHandler 接口的类,必须重写接口里的 invoke()方法. 创建被代理的类和接口 通过 Proxy 的静态方法 newProxyInsat ...
- pytest一:pytest 框架介绍
pytest 是 python 的一种单元测试框架,与python 自带的 unittest测试框架类似,但是比 unittest 框架使用起来更简洁,效率更高.根据pytest 的官方网站介绍,它具 ...
- Kibana加载样本数据
kibana 6.2 加载样本数据 kibana loading sample data 下载样本数据 # 莎士比亚经典作品 wget https://download.elastic.co/demo ...