弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径
#include <iostream>
#include <string>
#include <iomanip>
using namespace std; #define INFINITY 65535
#define MAX_VERTEX_NUM 10 typedef struct MGraph{
string vexs[10];//顶点信息
int arcs[10][10];//邻接矩阵
int vexnum, arcnum;//顶点数和边数
}MGraph; int LocateVex(MGraph G, string u)//返回顶点u在图中的位置
{
for(int i=0; i<G.vexnum; i++)
if(G.vexs[i]==u)
return i;
return -1;
} void CreateDN(MGraph &G)//构造有向图
{
string v1, v2;
int w;
int i, j, k;
cout<<"请输入顶点数和边数:";
cin>>G.vexnum>>G.arcnum; cout<<"请输入顶点:";
for(i=0; i<G.vexnum; i++)
cin>>G.vexs[i]; for(i=0; i<G.vexnum; i++)
for(j=0; j<G.vexnum; j++)
G.arcs[i][j]=INFINITY; cout<<"请输入边和权值:"<<endl;
for(k=0; k<G.arcnum; k++)
{
cin>>v1>>v2>>w;
i=LocateVex(G, v1);
j=LocateVex(G, v2);
G.arcs[i][j]=w;
}
} //弗洛伊德算法求每一对顶点间的最短路径
//p[v][w][i]表示当前求得的顶点v到顶点w的最短路径中的第i+1个顶点,这是打印最短路径的关键
//D[v][w]表示当前求得的顶点v到顶点w的最短路径的长度
void ShortestPath_FLOYD(MGraph G, int p[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM], int D[][MAX_VERTEX_NUM])
{
int u, v, w, i, j; for(v=0; v<G.vexnum; v++)
for(w=0; w<G.vexnum; w++)
{
D[v][w]=G.arcs[v][w];
for(u=0; u<G.vexnum; u++)
p[v][w][u]=-1;
if(D[v][w] < INFINITY)
{
p[v][w][0]=v;
p[v][w][1]=w;
}
} for(u=0; u<G.vexnum; u++)
for(v=0; v<G.vexnum; v++)
for(w=0; w<G.vexnum; w++)
if(D[v][u] < INFINITY && D[u][w] < INFINITY && D[v][u]+D[u][w] < D[v][w])
{
//更新D
D[v][w]=D[v][u]+D[u][w];
//更新p,从v到w的路径是从v到u,再从u到w的所有路径
for(i=0; i<G.vexnum; i++)
{
if(p[v][u][i]!=-1)
p[v][w][i]=p[v][u][i];
else
break;
}
for(j=1; j<G.vexnum; j++)//注意:这里j从1开始而不是从0开始,因为从v到u的路径最后一个顶点是u, 而从u到w的路径第一个顶点是u,只需打印u一次即可。
{
if(p[u][w][j]!=-1)
p[v][w][i++]=p[u][w][j];
else
break;
} } } void main()
{
MGraph g;
int p[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM];
int D[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; CreateDN(g);
for(int i=0; i<g.vexnum; i++)
g.arcs[i][i]=0;
ShortestPath_FLOYD(g, p, D); cout<<"d矩阵(最短路径长度矩阵):"<<endl;
for(i=0; i<g.vexnum; i++)
{
for(int j=0; j<g.vexnum; j++)
cout<<setw(5)<<D[i][j]<<" ";
cout<<endl;
} cout<<endl;
cout<<"各顶点间最短长度及路径如下:"<<endl;
for(i=0; i<g.vexnum; i++)
{
for(int j=0; j<g.vexnum; j++)
{
if(i!=j)
{
if(D[i][j]!=INFINITY)
{
cout<<g.vexs[i]<<"到"<<g.vexs[j]<<"的最短长度为:"<<setw(5)<<D[i][j]<<", 最短路径为:";
for(int k=0; k<g.vexnum; k++)
{
if(p[i][j][k]!=-1)
cout<<g.vexs[p[i][j][k]]<<" ";
else
break;
}
cout<<endl;
}
else
cout<<g.vexs[i]<<"到"<<g.vexs[j]<<"不可达"<<endl;
} }
cout<<endl; } }
测试一:
测试二:
弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径的更多相关文章
- AOJ -0189 Convenient Location && poj 2139 Six Degrees of Cowvin Bacon (floyed求任意两点间的最短路)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=78207 看懂题就好. 求某一办公室到其他办公室的最短距离. 多组输入,n表示 ...
- Floyed-Warshall算法(求任意两点间最短距离)
思路:感觉有点像暴力啊,反正我是觉得很暴力,比如求d[i][j],用这个方法求的话,就直接考虑会不会经过点k(k是任意一点) ,最终求得最小值 看代码 #include<iostream> ...
- Floyd(弗洛伊德)算法(C语言)
转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法的介绍 算法的特点 弗洛伊德算法是解决任意两点间的最短路径的一 ...
- 每一对顶点间最短路径的Floyd算法
Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]} -1<=k<=n ...
- AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)
题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...
- 图->最短路径->多源最短路径(弗洛伊德算法Floyd)
文字描述 求每一对顶点间的最短路径,可以每次以一个顶点为源点,重复执行迪杰斯特拉算法n次.这样,便可求得每一对顶点之间的最短路径.总的执行时间为n^3.但是还有另外一种求每一对顶点间最短路径的方法,就 ...
- 图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪 ...
- [从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第 ...
- 经典问题----最短路径(Floyd弗洛伊德算法)(HDU2066)
问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Flo ...
随机推荐
- MySQL基于LVM快照的备份恢复(临时)
目录1.数据库全备份2.准备LVM卷3.数据恢复到LVM卷4.基于LVM快照备份数据5.数据灾难恢复6.总结 写在前面:测试环境中已安装有mysql 5.5.36数据库,但数据目录没有存放在LVM卷, ...
- c或c++的网络库
Asio C++ Library: Asio is a cross-platform C++ library for network and low-level I/O programming tha ...
- 执行update语句mysql5.6报错ERROR 1292 (22007): Truncated incorrect DOUBLE value: '糖糖的坤大叔'
执行修改语句update tbl_user_details set nickname=CONCAT("用户",yunva_id) where nickname = yunva_id ...
- 利用mysqltuner工具对mysql数据库进行优化
mysqltuner工具使用,本工具建议定期运行,发现目前MYSQL数据库存在的问题及修改相关的参数 工具的下载及部署 解决环境依赖,因为工具是perl脚本开发的,需要perl脚本环境 # yun i ...
- Java的初始化执行顺序(父类static变量->子类static变量->父类成员变量->父类构造器->成员变量->构造器->main函数)
1. 引言 了解Java初始化的顺序,有助于理解Java的初始化机制和内存机制. 顺序:父类static变量->子类static变量->父类成员变量->父类构造器->成员变量- ...
- 浏览器的userAgent归纳
IE IE6 User-Agent:Mozilla/4.0 (Windows; MSIE 6.0; Windows NT 5.2) IE7 User-Agent:Mozilla/4.0 (compat ...
- Maven实战(Maven+Nexus建立私服【Linux系统】)
准备工作 下载及配置Maven3:http://www.cnblogs.com/leefreeman/archive/2013/03/05/2944519.html 下载Nexus:http://ne ...
- Laravel Cache 的缓存文件在到期后是否会自动删除
验证缓存文件是否会自动删除的目的是,防止产生大量的缓存文件,占满磁盘.因为,我最近越来越多的使用 cache 来缓存各类 token. 使用的是 file 作为 CACHE_DRIVER CACHE_ ...
- 多行文字溢出[...]的实现(text-overflow: ellipsis)
声明:此文章为转载(点击查看原文),如有侵权24小时内删除.联系QQ:1522025433. 对于单行文字, 很简单.(详见css3产考手册 进入) css: .oneLine { width: 20 ...
- RabbitMQ(三): exchange 的使用
1. Exchange(交换机) 生产者只能发送信息到交换机,交换机接收到生产者的信息,然后按照规则把它推送到对列中. 一方面是接收生产者的消息,另一方面是像队列推送消息. 匿名转发 "&q ...