Wannafly挑战赛25游记
Wannafly挑战赛25游记
A - 因子
题目大意:
令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\)并且\(p^{k+1}\not|x\)的因子。
思路:
枚举\(p\)的每一个质因数\(q\),求出它在\(n!\)出现次数\(/p\)中出现次数,取\(\min\)即可。对于一个质因数\(q\),在\(n!\)中出现的次数等于\(\sum_{i=1}^{\inf}\frac n{q^i}\)。
源代码:
#include<cstdio>
#include<cctype>
#include<climits>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
int main() {
int64 m=getint(),p=getint(),k=LLONG_MAX;
for(register int64 i=2;i<=p;i++) {
if(p%i==0) {
int64 tmp=0,n=m,cnt=0;
while(n) {
tmp+=n/i;
n/=i;
}
while(p%i==0) {
p/=i;
cnt++;
}
k=std::min(k,tmp/cnt);
}
}
printf("%lld\n",k);
return 0;
}
B - 面积并
题目大意:
有一个正\(n\)边形,它的外接圆的圆心位于原点,半径为\(l\)。以原点为圆心,\(r\)为半径作一个圆,求圆和这个正\(n\)边形的面积并。
思路:
割补法直接算即可。注意精度问题。
源代码:
#include<cmath>
#include<cstdio>
#include<cctype>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
long double n,l,r,y;
int main() {
n=getint(),l=getint(),r=getint();
y=l*cosl(M_PIl/n);
if(r>l) {
printf("%.2Lf\n",M_PIl*r*r);
return 0;
}
if(r<y) {
printf("%.2Lf\n",.5*l*l*n*sinl(M_PIl*2/n));
return 0;
}
printf("%.2Lf\n",r*r*acosl(y/r)*n+y*(sqrtl(l*l-y*y)-sqrtl(r*r-y*y))*n);
return 0;
}
C - 期望操作数
题目大意:
\(T(T\le10^6)\)组询问\(x,q(x,q\le10^7)\),每次操作将\(x\)变成\([x,q]\)中的一个随机整数,求\(x\)变到\(q\)期望需要多少次操作。
思路:
显然\(x\to q\)相当于\(0\to x-q\)。
如果从\(0\)开始操作,\(f_i\)表示变成\(i\)的期望次数,那么\(f_i=\frac{\sum_{j=0}^if_i}{i+1}+1\)。
变形得:\(f_i=\frac{1+\sum_{j=0}^{i-1}f_i}{i}+1\)。
前缀和优化预处理\(f\)即可。
源代码:
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e7+1,mod=998244353;
int f[N],g[N],inv[N];
int main() {
inv[1]=1;
for(register int i=2;i<N;i++) {
inv[i]=(int64)(mod-mod/i)*inv[mod%i]%mod;
}
for(register int i=1;i<N;i++) {
f[i]=(int64)(g[i-1]+i+1)*inv[i]%mod;
(g[i]=g[i-1]+f[i])%=mod;
}
for(register int T=getint();T;T--) {
const int x=getint(),q=getint();
printf("%d\n",f[q-x]);
}
return 0;
}
D - 玩游戏
题目大意:
有一张\(n\)个点\(m\)条边的带正权的简单无向图,其中除了\(1\)号点和\(n\)号点每个点度数小于等于\(2\)。
A和B轮流操作,A先手,每次操作的人可以选择一条仍然存在的边,并且使得边权减\(1\)。如果有一条边边权减为了\(0\),它会立即消失。
当\(1\)和\(n\)不连通时,上一个操作的人输。问A是否有必胜策略。
思路:
首先给出的图相当于若干条连接\(1\)和\(n\)的不相交的链,其余边都和\(1\)到\(n\)的连通性无关。
在结束游戏前的最后一步一定是剩下一条边权全是\(1\)的链。如果剩下的最后一条路径确定了,游戏的总步数也确定了,那么先后手的胜负也确定了。因此我们可以通过链上的边数的奇偶性来判断这条连是谁的必胜路径。
那么双方的策略就是尽可能切断使对方必胜的路径。切断一条路径需要的步数是这条路径上的权值的最小值。我们只需要比较双方切断对方必胜的路径所需要的步数即可。
源代码:
#include<cstdio>
#include<cctype>
#include<vector>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=1e5+1;
int n,m;
int64 sum[N],cnt[2];
struct Edge {
int to,w;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
e[v].push_back((Edge){u,w});
}
void dfs(const int &x,const int &par,const int &dep,const int &min) {
if(x==n) {
sum[dep]+=min;
return;
}
for(auto &j:e[x]) {
const int &y=j.to,&w=j.w;
if(y==par) continue;
dfs(y,x,dep+1,std::min(min,w));
}
}
int main() {
n=getint(),m=getint();
int64 tot=0;
for(register int i=0;i<m;i++) {
const int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
tot+=w;
}
dfs(1,0,0,INT_MAX);
for(register int i=1;i<=n;i++) {
cnt[i&1]+=sum[i];
}
puts(cnt[tot&1]<=cnt[!(tot&1)]?"Yes":"No");
return 0;
}
Wannafly挑战赛25游记的更多相关文章
- Wannafly挑战赛24游记
Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...
- Wannafly挑战赛22游记
Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...
- Wannafly挑战赛25 B.面积并
链接 [https://www.nowcoder.com/acm/contest/197/B] 分析 特殊优先考虑 首先考虑r>=l这种情况就是圆的面积了 第二就是r<=内切圆的半径,这个 ...
- Wannafly挑战赛25 A.因子
传送门 [https://www.nowcoder.com/acm/contest/197/A] 题意 给你n,m,让你求n!里有多少个m 分析 看这个你就懂了 [https://blog.csdn. ...
- Wannafly挑战赛25 C 期望操作数 数学
题目 题意:给你你一个数x和一个数q,x<=q,每一次可以等概率把x变成[x,q]中任意一个数,问变成q的步数的期望,输出对998244353取模,多组询问 题解:首先肯定的是,可以预处理,因为 ...
- Wannafly挑战赛25 B 面积并 数学
题面 题意:有一个正n边形,它的外接圆的圆心位于原点,半径为l .以原点为圆心,r为半径作一个圆,求圆和这个正n边形的面积并.3<=n<=1e8 1<=l<=1e6 0< ...
- Wannafly挑战赛25 A 因子 数学
题面 题意:令 X = n!,给定一大于1的正整数p,求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子,n,,p(1e18>=n>=1e4>=p>=2) ...
- Wannafly挑战赛25 因子 [数论]
一.题意 令 X = n!, 给定一大于1的正整数p 求一个k使得 p ^k | X 并且 p ^(k + 1) 不是X的因子 输入为两个数n, p (1e18>= n>= 10000 & ...
- Wannafly挑战赛27
Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...
随机推荐
- DFP算法(转载)
转载链接:http://blog.csdn.net/itplus/article/details/21896981 注意:式(2.25)中,蓝色变量之所以是实数可以根据它们的矩阵系数相乘为1*1得到.
- NandFlash和iNand
nand 1.nand的单元组织:block与page(大页Nand与小页Nand)(1)Nand的页和以前讲过的块设备(尤其是硬盘)的扇区是类似的.扇区最早在磁盘中是512字节,后来也有些高级硬盘扇 ...
- mysql启动时报错:Starting MySQL... ERROR! The server quit without updating PID file (/opt/mysql/data/mysql.pid)
mysql启动报错Starting MySQL... ERROR! The server quit without updating PID file (/opt/mysql/data/mysql.p ...
- spring mvc 返回类型
spring mvc处理方法支持如下的返回方式:ModelAndView, Model, ModelMap, Map,View, String, void 小结:1.使用 String 作为请求处理方 ...
- oracle 回退表空间清理
1.查看已有表空间,找到回退表空间 SELECT * FROM DBA_TABLESPACES WHERE CONTENTS='UNDO' 2.创建新的回退表空间 create undo tables ...
- linux /proc目录说明(访问内核数据结构,修改内核设置)
1. /proc目录 Linux 内核提供了一种通过 /proc 文件系统,在运行时访问内核内部数据结构.改变内核设置的机制.proc文件系统是一个伪文件系统,它只存在内存当中,而不占用外存空间.它以 ...
- JavaScript对象简介(一)
本节介绍js的9个对象:Array数组对象 Boolean(true false) Date日前对象 Math 数学对象 Number 数字对象 String 字符串对象 RegExp 正则表达式对象 ...
- tsconfig.json配置
什么工具看什么官网-一般都会有说明的 https://www.tslang.cn/docs/handbook/tsconfig-json.html 概述 如果一个目录下存在一个tsconfig.jso ...
- jQuery .on() and .off() 命名空间
jQuery .on() and .off() 命名空间 博客分类: 生活 前端开发 jQuery1.7开始,jQuery引入了全新的事件绑定机制,jQuery .on() 和 off() 两个函 ...
- LeetCode(7):颠倒整数
Easy! 题目描述:给定一个范围为 32 位 int 的整数,将其颠倒. 例1: 输入:132 输出:321 例2: 输入:-123 输出:-321 例3: 输入:120 输出:21 注意:假设我们 ...