转自:findbill

本文讨论白化(Whitening),以及白化与 PCA(Principal Component Analysis) 和 ZCA(Zero-phase Component Analysis) 的关系。

白化

什么是白化?

维基百科给出的描述是:

即对数据做白化处理必须满足两个条件:

  1. 使数据的不同维度去相关;

  2. 使数据每个维度的方差为1;

条件1要求数据的协方差矩阵是个对角阵;条件2要求数据的协方差矩阵是个单位矩阵。

为什么使用白化?

教程给出的解释是:

假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的。白化的目的就是降低输入的冗余性。

比如在独立成分分析(ICA)中,对数据做白化预处理可以去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。

PCA白化 与 ZCA白化

PCA 白化

我曾在 这篇 文章里详细介绍了 PCA 的原理。

给定训练数据集(假设每个特征都具有零均值):

n 是数据维度;m 是样本个数。

数据的协方差矩阵为:

对协方差矩阵做奇异值分解:

U 是 Σ 的特征向量矩阵,S 是其特征值矩阵;因为 Σ 是对称方阵,所以 V=U',Σ=USV。

PCA 白化的定义如下:

其中,Xrotate 就是原数据在主成分轴上的投影,而 S^(-1/2) 相当于对每一个主轴上的数据做一个缩放,缩放因子就是除以对应特征值的平方根。

所以:

上式第 2 步是把 XPCAwhite 表达式带入得到的;第 3 步利用了矩阵 S 是对角阵的特性;第 4 步是将 Σ 作奇异值分解得到的;第 5 步利用了 U 是酉矩阵的性质(U'U=UU'=I)。

可见数据在经过 PCA 白化以后,其协方差矩阵是一个单位矩阵,即各维度变得不相关,且每个维度方差都是 1。

ZCA 白化

教程里给 ZCA 白化的定义是:

相当于将经过 PCA 白化后的数据重新变换回原来的空间。

所以:

可见 ZCA 白化也是一个合法的白化。

PCA 白化 与 ZCA 白化

如何理解两者之间的关系?

首先,PCA 白化将原数据变换(投影)到主成分轴上,这一步消除了特征之间的相关性;

其次,PCA 白化对每一个主成分轴上的数据进行缩放,使其方差为 1;

因为以上的线性变换是在主成分空间中完成的,为了使白化后的数据尽可能接近原数据,可以把处理过的数据再变换回原空间,也就是 ZCA 白化。

ZCA 白化的全称是 Zero-phase Component Analysis Whitening。我对【零相位】的理解就是,相对于原来的空间(坐标系),白化后的数据并没有发生旋转(坐标变换)。

放一张来自网络的图片帮助读者直观理解:

*图片来自 这里

正则化

在实践中,PCA 与 ZCA 白化都需要被正则化(Regularization)。即在缩放这个步骤之前,给每一个特征值先加上一个正则化项:

教程给出的原因有两个:

  1. 有时一些特征值在数值上接近0,在缩放步骤时将导致除以一个接近0的值;这可能使数据上溢或造成数值不稳定;

  2. 对图像来说,正则化项对输入图像也有一些平滑去噪(或低通滤波)的作用,可改善学习到的特征。

以 PCA 白化为例,经过正则化的数据协方差矩阵为:

相当于减小了每个像素的不确定性(方差)。

关于低通滤波,可以这样理解:

最简单的低通滤波就是把一个像素的色值替换为其周围像素色值的算术平均。可以想象,经过处理之后的图像色彩变化更平缓,图像变得更模糊。

为什么要这样做?首先,数字图像总是伴随着噪点。其次,噪点总是伴随着色值的剧烈变化,因为每个噪点都是独立产生的。但是原图像的像素之间并不是独立的,表现为多像素构成的“色块”。

低通滤波器对“剧烈的"、"高频的”变化更敏感,所以它对噪音的影响大于对原图像的影响。经过低通滤波处理的图像可以展示出原本被噪音掩盖的细节。

这篇文章对低通滤波的解释很直观。

课后练习

这次提交了 3 组代码

pca_2d 和 pca_exercise 是教程的作业;pca_vs_zca 是我编写的用来对二者作比较的代码。

代码不复杂,所以这里直接给出 pca_vs_zca  的运行结果:

图1:原始数据

图2:零均值化以后的数据

图3:PCA 白化所使用的基

图4:ZCA 白化所使用的基:

本例使用的图片尺寸均为 12×12,数据具有 144 个维度,可以认为ZCA 白化的每一个基都处于其中一个维度(一个像素),即 ZCA 白化针对原数据每一个维度分别提取特征,而 PCA 白化是针对进行主成分变换后的数据的每一个维度提取特征,前者是高度局部化的,后者着眼于全局。

图5:PCA 白化后的数据

图6:ZCA 白化后的数据:

显然 ZCA 白化相比 PCA 白化更接近原数据。

白化(Whitening): PCA 与 ZCA (转)的更多相关文章

  1. DL四(预处理:主成分分析与白化 Preprocessing PCA and Whitening )

    预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis ...

  2. PCA、ZCA白化

    白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化又分为PCA白化和ZCA白化,在数据 ...

  3. [转载]什么是白化(whitening)?

    [转载]什么是白化(whitening)? 来源:https://blog.csdn.net/hjimce/article/details/50864602 白化whitening 原文地址:http ...

  4. 白化whitening

    原文地址:http://blog.csdn.net/hjimce/article/details/50864602 作者:hjimce 一.相关理论     白化这个词,可能在深度学习领域比较常遇到, ...

  5. Deep Learning 学习笔记(9):主成分分析( PCA )与 白化( whitening )

    废话: 这博客有三个月没更新了. 三个月!!!尼玛我真是够懒了!! 这三个月我复习什么去了呢? 托福………… 也不是说我复习紧张到完全没时间更新, 事实上我甚至有时间打LOL. 只是说,我一次就只能( ...

  6. 深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening

    主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同 ...

  7. 【机器学习】数据处理中白化Whitening的作用图解分析

    之前在看斯坦福教程中whiteining这一章时,由于原始图像相邻像素值具有高度相关性,所以图像数据信息冗余,对于白化的作用的描述主要有两个方面:1,减少特征之间的相关性:2,特征具有相同的方差(协方 ...

  8. 转:UFLDL_Tutorial 笔记(deep learning绝佳的入门资料 )

    http://blog.csdn.net/dinosoft/article/details/50103503 推荐一个deep learning绝佳的入门资料 * UFLDL(Unsupervised ...

  9. (六)6.8 Neurons Networks implements of PCA ZCA and whitening

    PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4 ...

随机推荐

  1. Java编程思想 学习笔记6

    六.访问权限控制 访问控制(或隐藏具体实现)与“最初的实现并不恰当”有关. 如何把变动的事物与保持不变的事物区分开来,这是面向对象设计中的一个基本问题. 为了解决这一问题,Java提供了访问权限修饰词 ...

  2. (零)SQL server安装配置

    ( 这里附加一个破解码: YFC4R-BRRWB-TVP9Y-6WJQ9-MCJQ7 ) (不选择) (默认实例,还有不建议安装在根目录下,可以安装到D盘之类的) (添加当前用户) (都选择仅安装) ...

  3. Web版微信协议分析—版本2

    微信web协议分析(微信网页版 wx2.qq.com) 1.打开首页,分配一个随机uuid,2.根据该uuid获取二维码图片.3.微信客户端扫描该图片,在客户端确认登录.4.浏览器不停的调用一个接口, ...

  4. u-boot移植(八)---代码修改---存储控制器--MMU

    一.MMU介绍 1.1 虚拟地址与物理地址 建立两个应用程序,hello1.c和hello2.c,然后运行: hello1.c hello2.c 运行结果如下: 可以看到两个结果打印的地址是一样的,都 ...

  5. Oracle——环比增长率

    首先,了解什么是:环比增长率? 环比增长率=(本期数-上期数)÷上期数×100% 如:2014年2月的工资为:5000,2014年1月的工资为4000,则2月份的环比增长率为: (5000-4000) ...

  6. C# 摇奖机实例(线程)

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  7. POJ1236 Network of Schools【强连通】

    题意: N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1:初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件 ...

  8. MHA-Failover可能遇到的坑

    一.主从数据一致性 1.1.如何保证主从数据一致性 参考叶师傅文章:FAQ系列 | 如何保证主从复制数据一致性 在MySQL中,一次事务提交后,需要写undo.写redo.写binlog,写数据文件等 ...

  9. django学习~第四篇

    django表单   1  今天继续来学学django的表单       首先介绍下http的方法,这是最基本的       GET 方法 GET一般用于获取/查询 资源信息,以?分割URL和传输数据 ...

  10. python - class类 (一)

    三大编程范式 1.面向过程 2.函数式 3.面向对象 注意 编程范式没有高低之分,只有适用不适用. 面向对象编程: 编程是程序源用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程,一 ...