this blog from: https://github.com/LantaoYu/MARL-Papers

Paper Collection of Multi-Agent Reinforcement Learning (MARL)

This is a collection of research and review papers of multi-agent reinforcement learning (MARL). The sharing principle of these references here is for research. If any authors do not want their paper to be listed here, please feel free to contact me. Papers are sorted by time. Any suggestions and pull requests are welcome.

Overview

Tutorial

Review Papers

Research Papers

Framework

Joint action learning

Cooperation and competition

Security

Self-Play

Communication

Transfer Learning

Inverse Reinforcement Learning

Application

(zhuan) Paper Collection of Multi-Agent Reinforcement Learning (MARL)的更多相关文章

  1. [DQN] What is Deep Reinforcement Learning

    已经成为DL中专门的一派,高大上的样子 Intro: MIT 6.S191 Lecture 6: Deep Reinforcement Learning Course: CS 294: Deep Re ...

  2. (转)Applications of Reinforcement Learning in Real World

    Applications of Reinforcement Learning in Real World 2018-08-05 18:58:04 This blog is copied from: h ...

  3. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

  4. Introduction to Learning to Trade with Reinforcement Learning

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...

  5. 机器学习之强化学习概览(Machine Learning for Humans: Reinforcement Learning)

    声明:本文翻译自Vishal Maini在Medium平台上发布的<Machine Learning for Humans>的教程的<Part 5: Reinforcement Le ...

  6. Awesome Reinforcement Learning

    Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...

  7. (zhuan) Evolution Strategies as a Scalable Alternative to Reinforcement Learning

    Evolution Strategies as a Scalable Alternative to Reinforcement Learning this blog from: https://blo ...

  8. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  9. Paper Reading 1 - Playing Atari with Deep Reinforcement Learning

    来源:NIPS 2013 作者:DeepMind 理解基础: 增强学习基本知识 深度学习 特别是卷积神经网络的基本知识 创新点:第一个将深度学习模型与增强学习结合在一起从而成功地直接从高维的输入学习控 ...

随机推荐

  1. Spark学习之路 (十一)SparkCore的调优之Spark内存模型

    摘抄自:https://www.ibm.com/developerworks/cn/analytics/library/ba-cn-apache-spark-memory-management/ind ...

  2. ftp下载文件失败get: Access failed: 550 Failed to open file. (t1.log)

    get: Access failed: 550 Failed to open file. (t1.log) 原因是被SELinux安全访问控制策略限制了. 科普: SELinux(Security-E ...

  3. 禁用HTTP.sys,导致80端口被禁用和IIS服务无法启动解决办法

    由于端口被占用,使用 win+r 运行 cmd 输入netstat -ano 可以看到端口被PIF 4占用,可以找到对应的进程NT kernel& System 该进程是Http.sys,是h ...

  4. css的优先级 和 权重

    之前写页面样式时,有时会遇到 用多条样式定义规则对同一个元素进行样式设置的时候,当时想到的就是  按css选择器的优先级来搞定这个问题,说实话当时也就只记得 内嵌样式 > id > cla ...

  5. .NET 常用ORM之Nbear

    NBear是一个基于.Net 2.0.C#2.0开放全部源代码的的软件开发框架类库.NBear的设计目标是尽最大努力减少开发人员的工作量,最大程度提升开发效率,同时兼顾性能及可伸缩性. 一.新建项目并 ...

  6. 搭建ELK日志分析(亲测无毒!)截图没有附上。。凑合看。搭建出来没有问题

    ( 1 )安装 Logstash 依赖包 JDK Logstash 的运行依赖于 Java 运行环境, Logstash 1.5 以上版本不低于 java 7 推荐使用最新版本的 Java .由于我们 ...

  7. kali linux常用软件配置记录

    首先膜一波,认真细致,简明有效. 感谢原博主的分享,留作参考. https://www.cnblogs.com/youfang/p/5272746.html

  8. EditPlus配置GTK

    --GCC GTK Compile-- 命令:D:\GCC\MinGW_RP_Green\bin\gcc.exe 参数:$(FileName) -w -o $(FileNameNoExt).exe - ...

  9. Kattis之旅——Perfect Pth Powers

    We say that x is a perfect square if, for some integer b, x = b2. Similarly, x is a perfect cube if, ...

  10. 关于Android Camera2 API 的自动对焦的坑

    https://www.jianshu.com/p/280e5301b7b9 一.使用.关于Camera2的API使用,参考Google官方的例子: Camera2Basic Camera2Raw C ...