Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

2017-10-25  16:38:23  

 【Project Pagehttps://blog.openai.com/learning-to-cooperate-compete-and-communicate/ 

   4. Method

  4.1 Multi-Agent Actor Critic

  

  该网络框架有如下假设条件: 

  (1) the learned policies can only use local information (i.e. their own observations) at execution time,

  (2) we do not assume a differentiable model of the environment dynamics, unlike in [24], 

  (3) we do not assume any particular structure on the communication method between agents (that is, we don’t assume a differentiable communication channel).  

  ================>>>

  1. 学习到的策略在执行时,仅仅是利用局部的信息

  2. 我们不假设环境动态的可微分模型

  3. 我们不假设 agents 之间任何通信模型上的特定结构

  本文的模型是以 centralized training with decentralized execution framework 为基础进行的,而这个框架的意思是:以全局的信息进行训练,而实际测试的时候是分散执行的

  更具体的来说,我们考虑有 N 个 agent 的游戏,所以,每个 agent i 的期望汇报可以记为:

  

  此处的 Q 函数 是一个中心化的动作值函数(centralized action-value function),将所有 agent 的动作作为输入,除了某些状态信息 X,然后输出是 the Q-value for agent i

  在最简单的情况下,x 可以包含所有 agent 的观测,x = (o1, ... , oN),但是我们也可以包含额外的状态信息。由于每一个 Q 都是分别学习的,agent 可以拥有任意的奖励结构,包括在竞争设定下的冲突奖励。

  

  我们可以将上述 idea 拓展到 deterministic policies。如果我们考虑到 N 个连续的策略,那么梯度可以写作:

  

  此处,经验回放池 D 包括 the tuples (x, x', a1, ... , aN, r1, ... , rN),记录所有 agents 的经验。中心化的动作值函数 Q可以通过如下的方程,进行更新:

  

  

  4.2 Inferring Policies of Other Agents

  为了移除假设:knowing other agents' policies, 就像公式(6)中所要求的那样。每一个 agent i 可以估计 agent j 的真实策略。这个估计的策略可以通过最大化 agent 选择动作的 log 概率,且加上一个 entropy regularizer:

  

  其中,H 是策略分布的熵。有了估计的策略,公式(6)中的 y 可以用估计的值 y^ 来进行计算:

  

  其中,\mu’ 代表用来估计策略的 target network。注意到,公式(7)可以完全在线的执行,before updating $Q_i^{\mu}$, the centralized Q function, 我们采取每一个 agent j 的最新的样本,from the replay buffer to perform a single gradient step to update $\phi^j_i$。另外,在上述公式中,我们直接将每个 agent 的动作 log 概率输入到 Q,而不是 sampling。

  4.3 Agents with Policy Ensembles

  

  


论文笔记:Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments的更多相关文章

  1. 深度增强学习--Actor Critic

    Actor Critic value-based和policy-based的结合 实例代码 import sys import gym import pylab import numpy as np ...

  2. 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)

    [论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...

  3. 深度学习论文笔记:Fast R-CNN

    知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时 ...

  4. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  5. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  6. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  7. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  8. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  9. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

随机推荐

  1. Yii2 Restful api搜索实现

  2. Java多线程-----实现生产者消费者模式的几种方式

       1 生产者消费者模式概述 生产者消费者模式就是通过一个容器来解决生产者和消费者的强耦合问题.生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理 ...

  3. sqlmap的使用

    安全测试===sqlmap(壹)转载   六.优化 这些参数可以优化Sqlmap的性能. 1.一键优化 参数:-o 添加此参数相当于同时添加下列三个优化参数: --keep-alive --null- ...

  4. L1正则和L2正则的比较分析详解

    原文链接:https://blog.csdn.net/w5688414/article/details/78046960 范数(norm) 数学上,范数是一个向量空间或矩阵上所有向量的长度和大小的求和 ...

  5. Vector集合——单列集合的“祖宗”类

    是实现可增长的对象数组:所以底层也是数组: 与collection集合不同的是,vector是同步的,意味着是单线程的,意味着效率低,速度慢, 所以在jdk1.2版本之后被ArrayList集合所取代 ...

  6. SQL小结

    1. 一般而言,除非你确实需要表中的每一列,否则最好别使用*通配符.虽然使用通配符让你自己省事,不用明确列出所需列,但检索不需要的列通常会降低检索和应用程序的性能. 2. DISTINCT关键字作用于 ...

  7. android使用ARouter跳转activity(阿里巴巴开源的)

    android使用ARouter跳转activity(阿里巴巴开源的) 使用ARouter方式,点击按钮跳转到其他activitypublic void buyOrSell(String str){ ...

  8. golang学习笔记15 golang用strings.Split切割字符串

    golang用strings.Split切割字符串 kv := strings.Split(authString, " ") if len(kv) != 2 || kv[0] != ...

  9. bzoj3678 简单题

    题目链接 bitset #include<algorithm> #include<iostream> #include<cstdlib> #include<c ...

  10. jquery easyui datagrid 空白条处理 自适应宽高 格式化函数formmater 初始化时会报错 cannot read property 'width'||'length' of null|undefined

    1---表格定义好之后右侧可能会有一个空白条 这个空白条是留给滚动条的,当表格中的一页的数据在页面中不能全显示时会自动出现滚动条,网上有很多事要改源码才可以修改这个,但是当项目中多处用到时,有的需要滚 ...