论文笔记:Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
2017-10-25 16:38:23
【Project Page】https://blog.openai.com/learning-to-cooperate-compete-and-communicate/
4. Method
4.1 Multi-Agent Actor Critic
该网络框架有如下假设条件:
(1) the learned policies can only use local information (i.e. their own observations) at execution time,
(2) we do not assume a differentiable model of the environment dynamics, unlike in [24],
(3) we do not assume any particular structure on the communication method between agents (that is, we don’t assume a differentiable communication channel).
================>>>
1. 学习到的策略在执行时,仅仅是利用局部的信息
2. 我们不假设环境动态的可微分模型
3. 我们不假设 agents 之间任何通信模型上的特定结构
本文的模型是以 centralized training with decentralized execution framework 为基础进行的,而这个框架的意思是:以全局的信息进行训练,而实际测试的时候是分散执行的。
更具体的来说,我们考虑有 N 个 agent 的游戏,所以,每个 agent i 的期望汇报可以记为:
此处的 Q 函数 是一个中心化的动作值函数(centralized action-value function),将所有 agent 的动作作为输入,除了某些状态信息 X,然后输出是 the Q-value for agent i。
在最简单的情况下,x 可以包含所有 agent 的观测,x = (o1, ... , oN),但是我们也可以包含额外的状态信息。由于每一个 Q 都是分别学习的,agent 可以拥有任意的奖励结构,包括在竞争设定下的冲突奖励。
我们可以将上述 idea 拓展到 deterministic policies。如果我们考虑到 N 个连续的策略,那么梯度可以写作:
此处,经验回放池 D 包括 the tuples (x, x', a1, ... , aN, r1, ... , rN),记录所有 agents 的经验。中心化的动作值函数 Q可以通过如下的方程,进行更新:
4.2 Inferring Policies of Other Agents
为了移除假设:knowing other agents' policies, 就像公式(6)中所要求的那样。每一个 agent i 可以估计 agent j 的真实策略。这个估计的策略可以通过最大化 agent 选择动作的 log 概率,且加上一个 entropy regularizer:
其中,H 是策略分布的熵。有了估计的策略,公式(6)中的 y 可以用估计的值 y^ 来进行计算:
其中,\mu’ 代表用来估计策略的 target network。注意到,公式(7)可以完全在线的执行,before updating $Q_i^{\mu}$, the centralized Q function, 我们采取每一个 agent j 的最新的样本,from the replay buffer to perform a single gradient step to update $\phi^j_i$。另外,在上述公式中,我们直接将每个 agent 的动作 log 概率输入到 Q,而不是 sampling。
4.3 Agents with Policy Ensembles
论文笔记:Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments的更多相关文章
- 深度增强学习--Actor Critic
Actor Critic value-based和policy-based的结合 实例代码 import sys import gym import pylab import numpy as np ...
- 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...
- 深度学习论文笔记:Fast R-CNN
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时 ...
- Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)
Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文, ...
- 论文笔记之:Visual Tracking with Fully Convolutional Networks
论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015 CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...
- Deep Learning论文笔记之(八)Deep Learning最新综述
Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...
- Twitter 新一代流处理利器——Heron 论文笔记之Heron架构
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...
- Deep Learning论文笔记之(六)Multi-Stage多级架构分析
Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些 ...
- Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型
看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...
随机推荐
- php aes128加密
//[加密数据]AES 128 ECB模式 public function aesEncrypt($str){ $screct_key = Yii::$app->params['encryptK ...
- Python使用闭包结合配置自动生成函数
背景 在构建测试用例集时,常常需要编写一些函数,这些函数接受基本相同的参数,仅有一个参数有所差异,并且处理模式也非常相同.可以使用Python闭包来定义模板函数,然后通过参数调节来自动化生产不同的函数 ...
- Java并发编程1--synchronized关键字用法详解
1.synchronized的作用 首先synchronized可以修饰方法或代码块,可以保证同一时刻只有一个线程可以执行这个方法或代码块,从而达到同步的效果,同时可以保证共享变量的内存可见性 2.s ...
- C# 调整控件的Z顺序
当窗口或者容器控件中的控件在布局过程中发生重叠的时候,会出现层次性.Z顺序较大的控件会遮挡Z顺序较小的控件,放在顶层的控件会挡住放在底层的控件. 1.编辑一个这样的窗口(使用Label控件) 2.添加 ...
- hashCode 一致性hash 算法
1 如果两个对象相同,那么它们的hashCode值一定要相同.也告诉我们重写equals方法,一定要重写 hashCode方法,同一个对象那么hashcode就是同一个(同一个对象什么都是相同的).2 ...
- bootstrapValidator验证表单后清除当次验证的方法
用bootstrapValidator的resetForm()方法: <!-- // create server begin --> <div class="modal f ...
- Django框架----中间件
我们已经会了给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面.我们通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可能也需要加上装饰器,这样是不是稍微有点 ...
- js call 和 apply方法记录
最近看到一篇很好的讲解apply和call的文章转了过来,若涉及版权问题请联系本人删除 1. 每个函数都包含两个非继承而来的方法:call()方法和apply()方法. 2. 相同点:这两个方法的作用 ...
- 高级架构进阶之HashMap源码就该这么学
引言--面试常见的问题 问:“你用过HashMap,你能跟我说说它吗?” “当然用过,HashMap是一种<key,value>的存储结构,能够快速将key的数据put方式存储起来,然后很 ...
- 关于Android Camera2 API 的自动对焦的坑
https://www.jianshu.com/p/280e5301b7b9 一.使用.关于Camera2的API使用,参考Google官方的例子: Camera2Basic Camera2Raw C ...