Autonomous_Vehicle_Paper_Reading_List

2018-07-19 10:40:08

Referencehttps://github.com/ZRZheng/Autonomous_Vehicle_Paper_Reading_List

A collection of papers focus on self-driving car. Many topics are covered including system architecture,computer vison, sensor fusion,planning&control and SLAM. The paper list will be timely updated.

System architecture

  • Junior: The Stanford Entry in the Urban Challenge [pdf]
  • Towards Fully Autonomous Driving: Systems and Algorithms [pdf]
  • Autonomous Driving in Urban Environments: Boss and the Urban Challenge [pdf]
  • A Perception-Driven Autonomous Urban Vehicle [pdf]
  • Making Bertha Drive—An Autonomous Journey on a Historic Route [pdf]
  • Towards Full Automated Drive in Urban Environments:A Demonstration in GoMentum Station, California [pdf]

Computer vision

  • Computer Vision for Autonomous Vehicles:Problems, Datasets and State-of-the-Art [pdf]
  • Video Scene Parsing with Predictive Feature Learning[pdf]
  • Unsupervised Monocular Depth Estimation with Left-Right Consistency [pdf]
  • Learning a Driving Simulator [pdf]
  • Deep Tracking:Seeing Beyond Seeing Using Recurrent Neural Networks [pdf]
  • End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks [pdf]
  • Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks [pdf]
  • Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image    [pdf]
  • 3D Object Proposals using Stereo Imagery for Accurate Object Class Detection [pdf]
  • On the Sample Complexity of End-to-end Training vs. Semantic Abstraction Training [pdf]
  • End to End Learning for Self-Driving Cars [pdf]
  • Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car [pdf]
  • DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [pdf]
  • End-to-end Learning of Driving Models from Large-scale Video Datasets [pdf]
  • Fully Convolutional Networks for Semantic Segmentation [pdf]
  • SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[pdf]
  • Feature Pyramid Networks for Object Detection[pdf]
  • Mask R-CNN [pdf]
  • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[pdf]
  • Fast R-CNN [pdf]
  • You Only Look Once:Unified, Real-Time Object Detection [pdf]
  • YOLO9000: Better,Faster, Stronger  [pdf]
  • SSD: Single Shot MultiBox Detector [pdf]
  • R-FCN: Object Detection via Region-based Fully Convolutional Networks [pdf]
  • Predicting Deeper into the Future of Semantic Segmentation [pdf]
  • Geometry-Based Next Frame Prediction from Monocular Video [pdf]
  • Long-term Recurrent Convolutional Networks for Visual Recognition and Description [pdf]
  • MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [pdf]
  • Beyond Skip Connections: Top-Down Modulation for Object Detection [pdf]
  • Traffic Sign Recognition with Multi-Scale Convolutional Networks [pdf]
  • Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? [pdf]
  • Pyramid Scene Parsing Network  [pdf]
  • Brain Inspired Cognitive Model with Attention for Self-Driving Cars [pdf]
  • Image-to-Image Translation with Conditional Adversarial Networks [pdf]
  • Unsupervised Image-to-Image Translation Networks [pdf]
  • A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection[pdf]
  • Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers [pdf]
  • Multi-Class Multi-Object Tracking using Changing Point Detection[pdf]
  • Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection[pdf]
  • Overview of Environment Perception for Intelligent Vehicles[pdf]
  • An Empirical Evaluation of Deep Learning on Highway Driving [pdf]
  • Histograms of Oriented Gradients for Human Detection [pdf]

Sensor fusion

  • LIDAR-based Driving Path Generation Using Fully Convolutional Neural Networks [pdf]
  • A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars [pdf]
  • Brain4Cars: Car That Knows Before You Do via Sensory-Fusion Deep Learning Architecture [pdf]
  • Multi-View 3D Object Detection Network for Autonomous Driving [pdf]
  • VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem [pdf]
  • Vehicle Detection from 3D Lidar Using Fully Convolutional Network[pdf]
  • Detecting Drivable Area for Self-driving Cars:An Unsupervised Approach [pdf]

Motion planning & Reinforcement learning

  • A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles[pdf]
  • A Review of Motion Planning Techniques for Automated Vehicles [pdf]
  • Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions [pdf]
  • A survey on motion prediction and risk assessment for intelligent vehicles [pdf]
  • End-to-End Deep Reinforcement Learning for Lane Keeping Assist [pdf]
  • Deep Reinforcement Learning framework for Autonomous Driving [pdf]
  • Continuous control with deep reinforcement learning [pdf]
  • Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks [pdf]
  • Long-term Planning by Short-term Prediction [pdf]
  • Safe,Multi-Agent, Reinforcement Learning for Autonomous Driving [pdf]
  • Large-scale cost function learning for path planning using deep inverse reinforcement learning [pdf]
  • Human-like Planning of Swerve Maneuvers for Autonomous Vehicles [pdf]
  • Virtual to Real Reinforcement Learning for Autonomous Driving [pdf]
  • Learning End-to-end Multimodal Sensor Policies for Autonomous Navigation [pdf]
  • A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning [pdf]
  • Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning [pdf]
  • Characterizing Driving Styles with Deep Learning [pdf]
  • Learning Where to Attend Like a Human Driver [pdf]
  • Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via Recurrent Neural Network [pdf]

SLAM

  • Past, Present, and Future of Simultaneous ocalization and Mapping: Toward theRobust-PerceptionAge [pdf]
  • Learning from Maps: Visual Common Sense for Autonomous Driving [pdf]
  • A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles [pdf]
  • Image-based localization using LSTMs for structured feature correlation [pdf]
  • PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[pdf]

(转)Autonomous_Vehicle_Paper_Reading_List的更多相关文章

随机推荐

  1. 你知道CSS实现水平垂直居中的第10种方式吗?

    你知道CSS实现水平垂直居中的第10种方式吗? 仅居中元素定宽高适用: absolute + 负 margin absolute + margin auto absolute + calc 居中元素不 ...

  2. tcpdump 命令

    tcpdump命令高级网络 tcpdump命令是一款sniffer工具,它可以打印所有经过网络接口的数据包的头信息,也可以使用-w选项将数据包保存到文件中,方便以后分析. 选项 -a:尝试将网络和广播 ...

  3. php中生成标准uuid(guid)的方法

    );// "}"        return $uuid;    }}echo guid();?>

  4. kali linux中文输入法

    kali linux中文输入法 已经使用kali linux有一段时间来,越用越喜欢,真的奥! 最近又有宝宝问我kali linux的中文输入法,鉴于当初在坑里蹲了很长时间,还是记录一下吧! The ...

  5. Spring Boot REST API 自动化测试

    Spring Boot需要写大量的Junit代码来测试REST API, 这点让不了解代码的人很头疼.如果使用REST client工具测试REST API,很多REST Client工具是不支持自动 ...

  6. 隐藏域传值到后台controller

    开发背景:一个页面有一个下拉框和一个单选按钮,下拉框保存的是厂商信息,单选按钮保存的是产品信息.每次下拉框的内容被选中,把厂商编码保存到隐藏域 <input type="hidden& ...

  7. gets函数

    gets函数    gets函数从标准输入读取一行文本并把它存储在作为参数传递给它的数组中    一行输入由一串字符组成,以一个换行符(newline)结尾    gets函数丢弃换行符,并在该行的末 ...

  8. Linux下EC20实现ppp拨号(转)

    源: Linux下EC20实现ppp拨号 参考: 4g模块EC20+android6.0系统移植 OK6410开发板调试EC20通信模块 海思3531添加移远EC20 4g模块 将移远通信的EC20驱 ...

  9. [c/c++] programming之路(5)、吓人小程序、变量、进制等

    一.设计一个吓人的东西 首先创建MFC项目(勾选“基于对话框”后点击完成即可) 添加三个按钮 双击按钮进入响应代码段 void CMFCWindowsDlg::OnBnClickedButton1() ...

  10. php 常用代码片断

    参考: https://www.jianshu.com/p/f5303225ef92 http://www.phpxs.com/code/php/