Autonomous_Vehicle_Paper_Reading_List

2018-07-19 10:40:08

Referencehttps://github.com/ZRZheng/Autonomous_Vehicle_Paper_Reading_List

A collection of papers focus on self-driving car. Many topics are covered including system architecture,computer vison, sensor fusion,planning&control and SLAM. The paper list will be timely updated.

System architecture

  • Junior: The Stanford Entry in the Urban Challenge [pdf]
  • Towards Fully Autonomous Driving: Systems and Algorithms [pdf]
  • Autonomous Driving in Urban Environments: Boss and the Urban Challenge [pdf]
  • A Perception-Driven Autonomous Urban Vehicle [pdf]
  • Making Bertha Drive—An Autonomous Journey on a Historic Route [pdf]
  • Towards Full Automated Drive in Urban Environments:A Demonstration in GoMentum Station, California [pdf]

Computer vision

  • Computer Vision for Autonomous Vehicles:Problems, Datasets and State-of-the-Art [pdf]
  • Video Scene Parsing with Predictive Feature Learning[pdf]
  • Unsupervised Monocular Depth Estimation with Left-Right Consistency [pdf]
  • Learning a Driving Simulator [pdf]
  • Deep Tracking:Seeing Beyond Seeing Using Recurrent Neural Networks [pdf]
  • End-to-End Tracking and Semantic Segmentation Using Recurrent Neural Networks [pdf]
  • Deep Tracking on the Move: Learning to Track the World from a Moving Vehicle using Recurrent Neural Networks [pdf]
  • Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monocular image    [pdf]
  • 3D Object Proposals using Stereo Imagery for Accurate Object Class Detection [pdf]
  • On the Sample Complexity of End-to-end Training vs. Semantic Abstraction Training [pdf]
  • End to End Learning for Self-Driving Cars [pdf]
  • Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car [pdf]
  • DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving [pdf]
  • End-to-end Learning of Driving Models from Large-scale Video Datasets [pdf]
  • Fully Convolutional Networks for Semantic Segmentation [pdf]
  • SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[pdf]
  • Feature Pyramid Networks for Object Detection[pdf]
  • Mask R-CNN [pdf]
  • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[pdf]
  • Fast R-CNN [pdf]
  • You Only Look Once:Unified, Real-Time Object Detection [pdf]
  • YOLO9000: Better,Faster, Stronger  [pdf]
  • SSD: Single Shot MultiBox Detector [pdf]
  • R-FCN: Object Detection via Region-based Fully Convolutional Networks [pdf]
  • Predicting Deeper into the Future of Semantic Segmentation [pdf]
  • Geometry-Based Next Frame Prediction from Monocular Video [pdf]
  • Long-term Recurrent Convolutional Networks for Visual Recognition and Description [pdf]
  • MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [pdf]
  • Beyond Skip Connections: Top-Down Modulation for Object Detection [pdf]
  • Traffic Sign Recognition with Multi-Scale Convolutional Networks [pdf]
  • Can we unify monocular detectors for autonomous driving by using the pixel-wise semantic segmentation of CNNs? [pdf]
  • Pyramid Scene Parsing Network  [pdf]
  • Brain Inspired Cognitive Model with Attention for Self-Driving Cars [pdf]
  • Image-to-Image Translation with Conditional Adversarial Networks [pdf]
  • Unsupervised Image-to-Image Translation Networks [pdf]
  • A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection[pdf]
  • Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers [pdf]
  • Multi-Class Multi-Object Tracking using Changing Point Detection[pdf]
  • Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection[pdf]
  • Overview of Environment Perception for Intelligent Vehicles[pdf]
  • An Empirical Evaluation of Deep Learning on Highway Driving [pdf]
  • Histograms of Oriented Gradients for Human Detection [pdf]

Sensor fusion

  • LIDAR-based Driving Path Generation Using Fully Convolutional Neural Networks [pdf]
  • A vision-centered multi-sensor fusing approach to self-localization and obstacle perception for robotic cars [pdf]
  • Brain4Cars: Car That Knows Before You Do via Sensory-Fusion Deep Learning Architecture [pdf]
  • Multi-View 3D Object Detection Network for Autonomous Driving [pdf]
  • VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem [pdf]
  • Vehicle Detection from 3D Lidar Using Fully Convolutional Network[pdf]
  • Detecting Drivable Area for Self-driving Cars:An Unsupervised Approach [pdf]

Motion planning & Reinforcement learning

  • A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles[pdf]
  • A Review of Motion Planning Techniques for Automated Vehicles [pdf]
  • Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions [pdf]
  • A survey on motion prediction and risk assessment for intelligent vehicles [pdf]
  • End-to-End Deep Reinforcement Learning for Lane Keeping Assist [pdf]
  • Deep Reinforcement Learning framework for Autonomous Driving [pdf]
  • Continuous control with deep reinforcement learning [pdf]
  • Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks [pdf]
  • Long-term Planning by Short-term Prediction [pdf]
  • Safe,Multi-Agent, Reinforcement Learning for Autonomous Driving [pdf]
  • Large-scale cost function learning for path planning using deep inverse reinforcement learning [pdf]
  • Human-like Planning of Swerve Maneuvers for Autonomous Vehicles [pdf]
  • Virtual to Real Reinforcement Learning for Autonomous Driving [pdf]
  • Learning End-to-end Multimodal Sensor Policies for Autonomous Navigation [pdf]
  • A Fast Integrated Planning and Control Framework for Autonomous Driving via Imitation Learning [pdf]
  • Navigating Intersections with Autonomous Vehicles using Deep Reinforcement Learning [pdf]
  • Characterizing Driving Styles with Deep Learning [pdf]
  • Learning Where to Attend Like a Human Driver [pdf]
  • Probabilistic Vehicle Trajectory Prediction over Occupancy Grid Map via Recurrent Neural Network [pdf]

SLAM

  • Past, Present, and Future of Simultaneous ocalization and Mapping: Toward theRobust-PerceptionAge [pdf]
  • Learning from Maps: Visual Common Sense for Autonomous Driving [pdf]
  • A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles [pdf]
  • Image-based localization using LSTMs for structured feature correlation [pdf]
  • PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization[pdf]

(转)Autonomous_Vehicle_Paper_Reading_List的更多相关文章

随机推荐

  1. Necklace of Beads (polya定理的引用)

    Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n &l ...

  2. Hadoop安装教程_单机/伪分布式配置_Hadoop2.6.0/Ubuntu14.04(转)

    http://www.powerxing.com/install-hadoop/ http://blog.csdn.net/beginner_lee/article/details/6429146 h ...

  3. freedom is a kind of responsibility

    张维迎教授在2017年7月1日北大国发院2017届毕业典礼上的发言<自由是一种责任> 张维迎:自由是一种责任    本文为张维迎教授在2017年7月1日北大国发院2017届毕业典礼上的发言 ...

  4. 孤立森林(Isolation Forest)

    前言随着机器学习近年来的流行,尤其是深度学习的火热.机器学习算法在很多领域的应用越来越普遍.最近,我在一家广告公司做广告点击反作弊算法研究工作.想到了异常检测算法,并且上网调研发现有一个算法非常火爆, ...

  5. linux常用命令:touch 命令

    linux的touch命令不常用,一般在使用make的时候可能会用到,用来修改文件时间戳,或者新建一个不存在的文件. 1.命令格式: touch [选项]... 文件... 2.命令参数: -a    ...

  6. c# 静态方法和数据

    c#所有方法都必须在类的内部声明,但如果把方法或者字段声明为static就可以使用,类名代用方法或者访问字段. 在方法中声明一个静态变量a 和一个静态的aFun方法.下面是在主函数中调用. 从上图可以 ...

  7. RocketMQ最佳实战

    RocketMQ 客户端最佳实践 1. Producer最佳实践 发送消息注意事项 1). 一个应用尽可能用一个Topic,消息子类型用tags来标识,tags可以由应用自由设置. 2). 消息发送成 ...

  8. QThread详解

    回顾Qt之线程(QThread),里面讲解了如何使用线程,但还有很多人留言没有看明白,那么今天我们来一起瞅瞅关于QThread管理线程的那些事儿... 一.线程管理 1.线程启动 void start ...

  9. [转载]Oracle ltrim() 函数用法

    前面有说到过LPAD和RPAD这两个函数用法的文章,今天发现与之相反意义的另外两个函数,那就是LTRIM() RTRIM(). 这次就挑LTRIM() 这一函数来讲讲: 具体的语法格式如下: LTRI ...

  10. fjwc2019

    机房搬迁.......再加上文化课.......咕了十几天才有空补上....... day0听一个教授讲理论......在学长的带领下咕掉了..... D1 T1:#178. 「2019冬令营提高组」 ...