传送门

      ——在LYC大佬的帮助下过了这道题

思路:

  LYC大佬的博客里已经讲得很清晰了,我只是提一下要点。

  求次短路,主要考虑两个方面:

  ①在不重复走一条路的前提下,把最短路的其中一段替换为另一段。

  ②找出最短路中的最短的一条边,重复走两次。(走过来又走回去)

  分别求出这两方面所能算出的次短路的值,取小的那一条就是答案。

补充:

  ①读入的边要开结构体存起来,后面枚举求次短路要使用。

  ②所谓枚举,就是找出从开始一条一条的读出边的两端点、权值。确定其是否在最短路上(即它的 左端点到源点的最短路+右端点到源点的最短路+自身的边权 是否等于最短路长度。(注意细节:要判断这条边的两端点到源点的最短路是否有重合部分,如下图。)

  

  设d[ a ]为 a 到源点的最短路,d[ b ]为 b 到源点的最短路,很显然,两条最短路有重合的地方,就需要将 a 点与 b 点交换位置,使得两条最短路没有重合,才能将 a->b 的权值加入。

代码实现:

        if(d1[x]+d2[y]>d1[y]+d2[x]) swap(x,y);

效果如下:

  

完整代码:

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<deque>
#include<set>
#include<map>
#include<vector>
#include<fstream>
using namespace std;
#define maxn 1000007
struct edge
{
int x,y,w;
}dd[maxn];
struct hh
{
int nex,to,dis;
}t[maxn];
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >q1;
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >q2;//正反两次最短路,两个小根堆
int n,m,cnt=,ans,mi;
int vis[maxn],d1[maxn],d2[maxn],head[maxn];
inline int read()
{
char kr=;
char ls;
for(;ls>''||ls<'';kr=ls,ls=getchar());
int xs=;
for(;ls>=''&&ls<='';ls=getchar())
{
xs=xs*+ls-;
}
if(kr=='-') xs=-xs;
return xs;
}
inline void add(int nex,int to,int w)
{
t[++cnt].nex=head[nex];
t[cnt].to=to;
t[cnt].dis=w;
head[nex]=cnt;
}
inline void dijkstra_first(int ww)
{
memset(d1,0x3f3f3f3f,sizeof(d1));
memset(vis,,sizeof(vis));
q1.push(make_pair(,ww));
d1[ww]=;
while(!q1.empty())
{
int u=q1.top().second;
q1.pop();
if(vis[u]) continue;
vis[u]=;
for(int v=head[u];v;v=t[v].nex)
{
if(d1[t[v].to]>d1[u]+t[v].dis&&!vis[t[v].to])
{
d1[t[v].to]=d1[u]+t[v].dis;
q1.push(make_pair(d1[t[v].to],t[v].to));
}
}
}
}
inline void dijkstra_second(int ww)
{
memset(d2,0x3f3f3f3f,sizeof(d2));
memset(vis,,sizeof(vis));
q2.push(make_pair(,ww));
d2[ww]=;
while(!q2.empty())
{
int u=q2.top().second;
q2.pop();
if(vis[u]) continue;
vis[u]=;
for(int v=head[u];v;v=t[v].nex)
{
if(d2[t[v].to]>d2[u]+t[v].dis&&!vis[t[v].to])
{
d2[t[v].to]=d2[u]+t[v].dis;
q2.push(make_pair(d2[t[v].to],t[v].to));
}
}
}
}//两次Dijkstra求正反最短路
int main()
{
n=read();m=read();
ans=;
mi=;
for(int i=;i<=m;++i)
{
dd[i].x=read();dd[i].y=read();dd[i].w=read();
add(dd[i].x,dd[i].y,dd[i].w);
add(dd[i].y,dd[i].x,dd[i].w);
}
dijkstra_first();
dijkstra_second(n);
int minn=d1[n];
for(int i=;i<=m;i++)
{
int x=dd[i].x,y=dd[i].y;
if(d1[x]+d2[y]>d1[y]+d2[x]) swap(x,y);
int s=d1[x]+d2[y];
if(s+dd[i].w==minn) continue;
ans=min(ans,s+dd[i].w);
}//第一点:不重走边
for(int i=;i<=m;i++)
{
int x=dd[i].x,y=dd[i].y;
if(d1[x]+d2[y]>d1[y]+d2[x]) swap(x,y);
if(d1[x]+d2[y]+dd[i].w!=minn) continue;
mi=min(mi,dd[i].w);//找出最短路中最短的边
}//第二点:重走边
ans=min(ans,minn+mi*);//取较小值
printf("%d\n",ans);
return ;
}

其实两遍的Dijkstra函数可以简化为一遍,多打一遍练练模板。

次短路——Dijkstra的更多相关文章

  1. hdu 2544 最短路 Dijkstra

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...

  2. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  3. 单源最短路dijkstra算法&&优化史

    一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...

  4. HUD.2544 最短路 (Dijkstra)

    HUD.2544 最短路 (Dijkstra) 题意分析 1表示起点,n表示起点(或者颠倒过来也可以) 建立无向图 从n或者1跑dij即可. 代码总览 #include <bits/stdc++ ...

  5. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

  6. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  7. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  8. 最短路Dijkstra算法的一些扩展问题

    最短路Dijkstra算法的一些扩展问题     很早以前写过关于A*求k短路的文章,那时候还不明白为什么还可以把所有点重复的放入堆中,只知道那样求出来的就是对的.知其然不知其所以然是件容易引发伤痛的 ...

  9. 华夏60 战斗机(最短路dijkstra)

    华夏60 战斗机(最短路dijkstra) 华夏60 超音速战斗机是当今世界上机动性能最先进的战斗机.战斗过程中的一个关键问题是如何在最短的时间内使飞机从当前的飞行高度和速度爬升/俯冲到指定的高度并达 ...

  10. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

随机推荐

  1. Ubuntu 为 root 帐号开启 SSH 登录

    1. 修改 root 密码sudo passwd root 2. 以其他账户登录,通过 sudo nano 修改 /etc/ssh/sshd_config :xxx@ubuntu:~$ su - ro ...

  2. Python进阶【第九篇】装饰器

    什么是装饰器 装饰器本身就是函数,并且为其他函数添加附加功能 装饰器的原则:1.不修改被装饰对象的源代码  2.不修改被装饰对象的调用方式装饰器=高阶函数+函数嵌套+闭包 # res=timmer(t ...

  3. Python进阶【第五篇】函数式编程及某些特殊函数

    一.函数式编程——Functional Programming 函数式=编程语言定义的函数+数学意义的函数 在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语 ...

  4. rman备份例子

    1.全备份例子 #!/bin/sh RMAN_OUTPUT_LOG=/home/oracle/rman_output.logRMAN_ERROR_LOG=/home/oracle/rman_error ...

  5. bzoj 2115 Xor - 线性基 - 贪心

    题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到 ...

  6. CentOS 7 install slurm cluster

    //slurm install //CentOS 7 system //192.168.159.141 node01 //192.168.159.142 node02 systemctl stop f ...

  7. noip模拟【service】

    service [问题描述] 一家公司为它在各地的用户提供服务,公司有三名负责这项工作的员工,分别编号为1,2,3,服务的地点有n个,分别编号为1,2,3,...n,把从编号为p的服务地点直接到达编号 ...

  8. thinkphp留言板开发笔记 1 - 新的

    关于php数组的排序函数的总结: 有很多种排序方式和排序规则: 正常排序和反向排序, 使用 -r来表示 排序时是否考虑索引/下标, 如果考虑则加上-a, a=associate. sort是按值来排序 ...

  9. luogu P2486 [SDOI2011]染色

    树剖做法: 就是两个dfs+一个线段树 难度的取决基本==线段树的维护难度 所以对有点线段树基础的,树剖也不难做吧 这里操作有二 一:两点间路径染色 线段树的区间赋值操作 二:查询路径段的个数 考虑线 ...

  10. SpringBoot 整合使用dubbo

    这里主要是按照teaey作者的spring-boot-starter-dubbo框架进行一些变化的使用 依赖包: <dependency> <groupId>com.aliba ...