传送门

      ——在LYC大佬的帮助下过了这道题

思路:

  LYC大佬的博客里已经讲得很清晰了,我只是提一下要点。

  求次短路,主要考虑两个方面:

  ①在不重复走一条路的前提下,把最短路的其中一段替换为另一段。

  ②找出最短路中的最短的一条边,重复走两次。(走过来又走回去)

  分别求出这两方面所能算出的次短路的值,取小的那一条就是答案。

补充:

  ①读入的边要开结构体存起来,后面枚举求次短路要使用。

  ②所谓枚举,就是找出从开始一条一条的读出边的两端点、权值。确定其是否在最短路上(即它的 左端点到源点的最短路+右端点到源点的最短路+自身的边权 是否等于最短路长度。(注意细节:要判断这条边的两端点到源点的最短路是否有重合部分,如下图。)

  

  设d[ a ]为 a 到源点的最短路,d[ b ]为 b 到源点的最短路,很显然,两条最短路有重合的地方,就需要将 a 点与 b 点交换位置,使得两条最短路没有重合,才能将 a->b 的权值加入。

代码实现:

        if(d1[x]+d2[y]>d1[y]+d2[x]) swap(x,y);

效果如下:

  

完整代码:

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<deque>
#include<set>
#include<map>
#include<vector>
#include<fstream>
using namespace std;
#define maxn 1000007
struct edge
{
int x,y,w;
}dd[maxn];
struct hh
{
int nex,to,dis;
}t[maxn];
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >q1;
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > >q2;//正反两次最短路,两个小根堆
int n,m,cnt=,ans,mi;
int vis[maxn],d1[maxn],d2[maxn],head[maxn];
inline int read()
{
char kr=;
char ls;
for(;ls>''||ls<'';kr=ls,ls=getchar());
int xs=;
for(;ls>=''&&ls<='';ls=getchar())
{
xs=xs*+ls-;
}
if(kr=='-') xs=-xs;
return xs;
}
inline void add(int nex,int to,int w)
{
t[++cnt].nex=head[nex];
t[cnt].to=to;
t[cnt].dis=w;
head[nex]=cnt;
}
inline void dijkstra_first(int ww)
{
memset(d1,0x3f3f3f3f,sizeof(d1));
memset(vis,,sizeof(vis));
q1.push(make_pair(,ww));
d1[ww]=;
while(!q1.empty())
{
int u=q1.top().second;
q1.pop();
if(vis[u]) continue;
vis[u]=;
for(int v=head[u];v;v=t[v].nex)
{
if(d1[t[v].to]>d1[u]+t[v].dis&&!vis[t[v].to])
{
d1[t[v].to]=d1[u]+t[v].dis;
q1.push(make_pair(d1[t[v].to],t[v].to));
}
}
}
}
inline void dijkstra_second(int ww)
{
memset(d2,0x3f3f3f3f,sizeof(d2));
memset(vis,,sizeof(vis));
q2.push(make_pair(,ww));
d2[ww]=;
while(!q2.empty())
{
int u=q2.top().second;
q2.pop();
if(vis[u]) continue;
vis[u]=;
for(int v=head[u];v;v=t[v].nex)
{
if(d2[t[v].to]>d2[u]+t[v].dis&&!vis[t[v].to])
{
d2[t[v].to]=d2[u]+t[v].dis;
q2.push(make_pair(d2[t[v].to],t[v].to));
}
}
}
}//两次Dijkstra求正反最短路
int main()
{
n=read();m=read();
ans=;
mi=;
for(int i=;i<=m;++i)
{
dd[i].x=read();dd[i].y=read();dd[i].w=read();
add(dd[i].x,dd[i].y,dd[i].w);
add(dd[i].y,dd[i].x,dd[i].w);
}
dijkstra_first();
dijkstra_second(n);
int minn=d1[n];
for(int i=;i<=m;i++)
{
int x=dd[i].x,y=dd[i].y;
if(d1[x]+d2[y]>d1[y]+d2[x]) swap(x,y);
int s=d1[x]+d2[y];
if(s+dd[i].w==minn) continue;
ans=min(ans,s+dd[i].w);
}//第一点:不重走边
for(int i=;i<=m;i++)
{
int x=dd[i].x,y=dd[i].y;
if(d1[x]+d2[y]>d1[y]+d2[x]) swap(x,y);
if(d1[x]+d2[y]+dd[i].w!=minn) continue;
mi=min(mi,dd[i].w);//找出最短路中最短的边
}//第二点:重走边
ans=min(ans,minn+mi*);//取较小值
printf("%d\n",ans);
return ;
}

其实两遍的Dijkstra函数可以简化为一遍,多打一遍练练模板。

次短路——Dijkstra的更多相关文章

  1. hdu 2544 最短路 Dijkstra

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...

  2. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  3. 单源最短路dijkstra算法&&优化史

    一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...

  4. HUD.2544 最短路 (Dijkstra)

    HUD.2544 最短路 (Dijkstra) 题意分析 1表示起点,n表示起点(或者颠倒过来也可以) 建立无向图 从n或者1跑dij即可. 代码总览 #include <bits/stdc++ ...

  5. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

  6. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  7. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  8. 最短路Dijkstra算法的一些扩展问题

    最短路Dijkstra算法的一些扩展问题     很早以前写过关于A*求k短路的文章,那时候还不明白为什么还可以把所有点重复的放入堆中,只知道那样求出来的就是对的.知其然不知其所以然是件容易引发伤痛的 ...

  9. 华夏60 战斗机(最短路dijkstra)

    华夏60 战斗机(最短路dijkstra) 华夏60 超音速战斗机是当今世界上机动性能最先进的战斗机.战斗过程中的一个关键问题是如何在最短的时间内使飞机从当前的飞行高度和速度爬升/俯冲到指定的高度并达 ...

  10. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

随机推荐

  1. Integer诡异特性

    package 代码测试; public class ceshi { public static void main(String[] args) { Integer i1=100; Integer ...

  2. TF-IDF基本原理

    1.TF-IDF介绍 TF/IDF(term frequency–inverse document frequency)用以评估字词 对于一个文件集其中一份文件的重要程度.字词的重要性随着它在文件中出 ...

  3. ads查询结果中文显示方框问题

    刚安装aqua data studio查询结果中文会变成小方框 选择File -->Options 找到General  -->Appearance,把Editor Font , Text ...

  4. git学习总结 - 纯命令

    全局安装git: npm intall git -g 查看git版本: git --version 进入目录,初始化git: 若在目录中使用上一个,不在目录中使用下一个. //已有目录: git in ...

  5. Strom学习笔记2:Storm Maven Project-StromStack工程

    1:IntelliJ新建Maven工程

  6. v-model指令实现简单的问卷表格

      <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&q ...

  7. c++ kafka 客户端rdkafka报Receive failed: Disconnected问题原因以及解决方法

    %3|1538976114.812|FAIL|rdkafka#producer-1| [thrd:kafka-server:9092/bootstrap]: kafka-server:9092/0: ...

  8. Net中应用 Redis 扩展类

    GIt地址:https://gitee.com/loogn/stackexchange-redis-typedextensions 1.stackexchange 类调用 using System; ...

  9. py4CV例子1猫狗大战和Knn算法

    1.什么是猫狗大战: 数据集来源于Kaggle(一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台),原数据集有12500只猫和12500只狗,分为训练.测试两个部分. 2 ...

  10. kali linux web程序集简述

    Burp Suite Burp Suite是一个用于执行Web应用程序安全性测试的集成平台. 它的各种工具可以无缝地协同工作,支持整个测试过程,从应用程序攻击面的初始映射和分析,到查找和利用安全漏洞. ...