B. Candy Boxes
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

There is an old tradition of keeping 4 boxes of candies in the house in Cyberland. The numbers of candies are special if their arithmetic mean, their median and their range are all equal. By definition, for a set {x1, x2, x3, x4} (x1 ≤ x2 ≤ x3 ≤ x4) arithmetic mean is , median is  and range is x4 - x1. The arithmetic mean and median are not necessary integer. It is well-known that if those three numbers are same, boxes will create a "debugging field" and codes in the field will have no bugs.

For example, 1, 1, 3, 3 is the example of 4 numbers meeting the condition because their mean, median and range are all equal to 2.

Jeff has 4 special boxes of candies. However, something bad has happened! Some of the boxes could have been lost and now there are only n (0 ≤ n ≤ 4) boxes remaining. The i-th remaining box contains ai candies.

Now Jeff wants to know: is there a possible way to find the number of candies of the 4 - n missing boxes, meeting the condition above (the mean, median and range are equal)?

Input

The first line of input contains an only integer n (0 ≤ n ≤ 4).

The next n lines contain integers ai, denoting the number of candies in the i-th box (1 ≤ ai ≤ 500).

Output

In the first output line, print "YES" if a solution exists, or print "NO" if there is no solution.

If a solution exists, you should output 4 - n more lines, each line containing an integer b, denoting the number of candies in a missing box.

All your numbers b must satisfy inequality 1 ≤ b ≤ 106. It is guaranteed that if there exists a positive integer solution, you can always find such b's meeting the condition. If there are multiple answers, you are allowed to print any of them.

Given numbers ai may follow in any order in the input, not necessary in non-decreasing.

ai may have stood at any positions in the original set, not necessary on lowest n first positions.

Examples
input
2
1
1
output
YES
3
3
input
3
1
1
1
output
NO
input
4
1
2
2
3
output
YES
题目大意:输入一个整数n,代表n个糖果盒子,接下来n个数,代表每个糖果盒子中的糖果数;看是否可以添加4-n个糖果盒子,组成4个糖果盒子(糖果盒中的糖果数记为a<=b<=c<=d),
使得(a+b+c+d)/4=(b+c)/2=d-a。如果不可以,输出NO;否则,输出YES以及添加的糖果盒子中的糖果数。
方法及证明:
分类谈论。
(a+b+c+d)/4=(b+c)/2=d-a
得①d=3a;②b+c=4a.
将糖果数保存进box[]中,并升序排序。
(1)当n==0,肯定存在,输出YES以及1,1,3,3;
(2)当n==1时,也肯定存在,输出YES以及box[0],box[0]*3,box[0]*3;
(3)当n==2时,如果box[0]和box[1]分别在a和b位置不满足条件,那么他们在任何位置也不满足条件,下面给出证明:
  由①得d=3*box[0]>0(满足条件)
由②得c=4*box[0]-box[1]
如果要不满足条件,那么只能是4*box[0]-box[1]<=0,得box[1]>=4*box[0]
  Ⅰ当box[0]和box[1]分别在a和c位置时,b=4*box[0]-box[1]<=0,不满足条件;
  Ⅱ当box[0]和box[1]分别在a和d位置时,box[1]=3*a=3*box[0],因为box[1]>=4*box[0],所以,3*box[0]>=4*box[0],矛盾;
  Ⅲ当box[0]和box[1]分别在b和c位置时,a=(box[0]+box[1])/4>=(5/4)*box[0]>box[0]=b,不满足升序条件;
  Ⅳ当box[0]和box[1]分别在b和d位置时,a=d/3=box[1]/3>=(4/3)*box[0]>box[0]=b,不满足升序条件。
证毕。
  所以,只要满足4*box[0]-box[1]>0,就一定存在;否则一定不存在。
(4)当n==3时,根据①②分别讨论box[0]box[1]box[2]在b,c,d或a,c,d(或a,b,d这2种类似)或a,b,c位置的情形,如果你上面的证明看懂了,那么这个对你来说就是小case了。
(5)当n==4时,看满不满足(a+b+c+d)/4=(b+c)/2=d-a。
代码如下:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1e6;
int main()
{
int n;
int box[];
cin>>n;
int sum=;
for(int i=;i<n;i++)
{
cin>>box[i];
sum+=box[i];
}
sort(box,box+n);
if(n==)
{
float ave=sum/4.0;
float med=(box[]+box[])/2.0;
float range=box[]-box[];
if(ave==med&&med==range)cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
else if(n==)
{
if(box[]%==&&(box[]+box[])%==&&box[]/==(box[]+box[])/)
{
cout<<"YES"<<endl;
cout<<box[]/<<endl;
}
else if(box[]==box[]*&&box[]*>box[])
{
cout<<"YES"<<endl;
cout<<box[]*-box[]<<endl;
}
else if((box[]+box[])%==&&box[]==(box[]+box[])/)
{
cout<<"YES"<<endl;
cout<<box[]*<<endl;
}
else
cout<<"NO"<<endl;
}
else if(n==)
{
int c=box[]*-box[];
int d=box[]*;
if(c<=)cout<<"NO"<<endl;
else
{
cout<<"YES"<<endl;
cout<<c<<endl;
cout<<d<<endl;
}
}
else if(n==)
{
cout<<"YES"<<endl;
cout<<box[]<<endl;
cout<<box[]*<<endl;
cout<<box[]*<<endl;
}
else if(n==)
{
cout<<"YES"<<endl;
cout<<<<endl;
cout<<<<endl;
cout<<<<endl;
cout<<<<endl;
}
return ;
}
  
 

Codeforces 488B - Candy Boxes的更多相关文章

  1. Brute Force - B. Candy Boxes ( Codeforces Round #278 (Div. 2)

    B. Candy Boxes Problem's Link:   http://codeforces.com/contest/488/problem/B Mean: T题目意思很简单,不解释. ana ...

  2. Codeforces Round #229 (Div. 2) C. Inna and Candy Boxes 树状数组s

    C. Inna and Candy Boxes   Inna loves sweets very much. She has n closed present boxes lines up in a ...

  3. Codeforces Round #278 (Div. 2) B. Candy Boxes [brute force+constructive algorithms]

    哎,最近弱爆了,,,不过这题还是不错滴~~ 要考虑完整各种情况 8795058                 2014-11-22 06:52:58     njczy2010     B - Ca ...

  4. codeforces 390C Inna and Candy Boxes

    这个题目看似不是很好下手,不过很容易发现每次询问的时候总是会问到第r个盒子是否有糖果: 这样的话就很好办事了: 维护两个数组: 一个sum数组:累加和: 一个in数组:如果i位是1的话,in[i]=i ...

  5. Educational Codeforces Round 31- D. Boxes And Balls

    D. Boxes And Balls time limit per test2 seconds memory limit per test256 megabytes 题目链接:http://codef ...

  6. codeforces A. Candy Bags 解题报告

    题目链接:http://codeforces.com/contest/334/problem/A 题意:有n个人,将1-n袋(第 i  袋共有 i  颗糖果,1<= i  <=n)所有的糖 ...

  7. [Codeforces 1053C] Putting Boxes Together

    Link: Codeforces 1053C 传送门 Solution: 先推出一个结论: 最后必有一个点不动且其为权值上最中间的一个点 证明用反证证出如果不在中间的点必有一段能用代价少的替代多的 这 ...

  8. codeforces 334A - Candy Bags

    忘了是偶数了,在纸上画奇数画了半天... #include<cstdio> #include<cstring> #include<cstdlib> #include ...

  9. cf C. Inna and Candy Boxes

    题意:给你一个长度为n的只含有1和0的字符串,w个询问,每次询问输入l,r:在[l,r]中在l+k-1.l+2*k-1.......r的位置都必须为1,如果不为1的,变成1,记为一次操作,其它的地方的 ...

随机推荐

  1. 关于er模型中的identifying relationship or non-identifying relationship

    最近,主要负责项目管理和领域模型设计方面的工作,昨天在将UML类图转换为ER模型的时候,发现有identifying relationship or non-identifying relations ...

  2. SSL/TLS代理(termination proxy)

    A TLS termination proxy (or SSL termination proxy) is a proxy server that is used by an institution ...

  3. vue.JS 介绍

    vueJS 介绍 首先,vueJS 是我很早之前就想要接触学习的东西,但是呢,一直没时间,主要是在学校,事太多,没心思定下心来学习,我学生生涯的最后一个假期的第一天晚上,万事开头难,那就先写点儿什么东 ...

  4. 变参标准函数的重新封装,如printf

    方法一: #include <stdio.h> #include <stdarg.h> void my_trace(const char *cmd, ...) { printf ...

  5. Qt5使用QFtp,二次封装

    1.需要的东西 ftp.cpp,ftp.h是二次封装的ftp类,放在工程下包含 QFtp和qftp.h放在D:\Qt5.7.1\5.7\msvc2013\include\QtNetwork: Qt5F ...

  6. Bootstrap3基础 img-thumbnail 给图片加一个圆角的边框

      内容 参数   OS   Windows 10 x64   browser   Firefox 65.0.2   framework     Bootstrap 3.3.7   editor    ...

  7. qvalue: Check that you have valid p-values or use a different range of lambda

    ERROR: The estimated pi0 <= 0. Check that you have valid p-values or use a different range of lam ...

  8. [HDU] 平方和与立方和

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2007 //坑:注意判断输入两个数的前后大小关系 // 用while 循环 #include<io ...

  9. Hyper-v虚拟机

    Hyper-V1:创建和管理虚拟机 Hyper-V2:向VM增加虚拟硬盘 Hyper-V3:虚拟机的配置 使用Hyper-V创建虚拟机 Hyper-v 安装CentOS 7 (其他虚拟机一样参考)

  10. Vue学习五:v-for指令使用方法

    本文为博主原创,未经允许不得转载: <!DOCTYPE html> <html lang="zh"> <head> <meta http- ...