UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html

由于结果对MOD取模,使用逆元

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 2016, INF = 0x3F3F3F3F, MOD = 1000000007; LL bo[N];
LL cm[N][N], inv[N]; void init(){
inv[1] = 1;
for(int i = 2; i < N; i++){
inv[i] = (MOD - MOD / i ) * inv[MOD % i] % MOD;
} memset(cm, 0, sizeof(cm));
cm[0][0] = 1;
for(int i = 1; i < N; i++){
cm[i][0] = 1;
for(int j = 1; j <= i; j++){
cm[i][j] = (cm[i - 1][j - 1] + cm[i - 1][j]) % MOD;
}
} bo[0] = 1;
for(int i = 1; i < N; i++){
bo[i] = 0;
for(int j = 0; j < i; j++){
bo[i] += cm[i + 1][j] * bo[j] % MOD;
bo[i] %= MOD;
}
bo[i] = (-bo[i] * inv[i + 1] % MOD + MOD) % MOD;
}
bo[1] = inv[2];
} LL PowMod(LL a,LL b,LL MOD){//快速幂
LL ret=1;
while(b){
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
} LL solve(LL n, LL m){
LL ans = 0;
for(LL k = 0; k <= m; k++){
ans += (cm[m + 1][k] * bo[k] % MOD) * PowMod(n % MOD, m + 1 - k, MOD) % MOD;
ans %= MOD;
}
ans = ans * inv[m + 1] % MOD;
return ans;
} int main(){
init();
int t;
cin >> t;
while(t--){
LL n, k;
scanf("%I64d %I64d", &n, &k);
printf("%I64d\n", solve(n, k));
}
return 0;
}

  

51nod1228 序列求和(自然数幂和)的更多相关文章

  1. 51Node1228序列求和 ——自然数幂和模板&&伯努利数

    伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...

  2. 51nod1228 序列求和(伯努利数)

    题面 传送门 题解 \(O(n^2)\)预处理伯努利数 不知道伯努利数是什么的可以看看这篇文章 不过这个数据范围拉格朗日差值应该也没问题--吧--大概-- //minamoto #include< ...

  3. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  4. HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)

    HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意:  g(i)=k*i+b;i为变量.  给出 ...

  5. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  6. 自然数幂和&伯努利数(Bernoulli)

    二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...

  7. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  8. 51nod1229 序列求和 V2 【数学】

    题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) ...

  9. 51nod_1236_序列求和 V3 _组合数学

    51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...

随机推荐

  1. Jsoup 使用教程:数据抽取

    1.使用DOM方法来遍历一个文档 问题 你有一个HTML文档要从中提取数据,并了解这个HTML文档的结构. 方法 将HTML解析成一个Document之后,就可以使用类似于DOM的方法进行操作.示例代 ...

  2. 【USACO 2.4】Cow Tours (最短路)

    题意:给你n(最多150)个点的坐标,给出邻接矩阵,并且整个图至少两个联通块,现在让你连接一条边,使得所有可联通的两点的最短距离的最大值最小. 题解:先dfs染色,再用floyd跑出原图的直径O($n ...

  3. Linux 查找进程运行位置

    1.通过ps或者top命令查看运行的进程的pid ps -aux|grep php-fpm #或者 top 2. 获取进程的pid后,然后使用命令ls -l /proc/${pid},这个命令可以列出 ...

  4. FragmentPagerAdapter+ViewPager+Fragment

    FragmentPagerAdapter中会在滑动到2页时,会预加载第三个页面.如果在这些页面中都有网络请求,那么当你还没有看到第三页时,第三页的数据请求已经发出.这样就会造成,当已进入该页面,可能会 ...

  5. Werewolf流程分析

    werewolf大致流程 首先是房主创建房间,创建成功以后房主开启web socket连接. 其他成员加入房间,加入房间后新成员和老成员的游戏玩家列表都会更新,然后新成员也要开启web socket连 ...

  6. [Android]Volley源码分析(四)

    上篇中有提到NetworkDispatcher是通过mNetwork(Network类型)来进行网络访问的,现在来看一下关于Network是如何进行网络访问的. Network部分的类图:

  7. windows下pip安装python模块时报错总结

    http://www.cnblogs.com/liaojiafa/p/5100550.html 前言: 这几天把python版本升级后,发现pip安装模块好多都报错(暂不确定是不是因为升级导致的),我 ...

  8. 安卓log4k问题解决

    1.直接上代码 //log4k问题 public static void log(String tag, String str) { int index = 0; // 当前位置 int max = ...

  9. php提供更快的文件下载

    在微博上偶然看到一篇介绍php更快下载文件的方法,其实就是利用web服务器的xsendfile特性,鸟哥的博客中只说了apache的实现方式,我找到了介绍nginx实现方式的文章,整理一下! let' ...

  10. context元素大概解说

    Context元素代表一个web应用,运行在某个特定的虚拟主机上.如Servlet Specification 2.2或以后版本中描述的那样,每个web应用基于一个Web Application Ar ...