51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html
由于结果对MOD取模,使用逆元
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 2016, INF = 0x3F3F3F3F, MOD = 1000000007; LL bo[N];
LL cm[N][N], inv[N]; void init(){
inv[1] = 1;
for(int i = 2; i < N; i++){
inv[i] = (MOD - MOD / i ) * inv[MOD % i] % MOD;
} memset(cm, 0, sizeof(cm));
cm[0][0] = 1;
for(int i = 1; i < N; i++){
cm[i][0] = 1;
for(int j = 1; j <= i; j++){
cm[i][j] = (cm[i - 1][j - 1] + cm[i - 1][j]) % MOD;
}
} bo[0] = 1;
for(int i = 1; i < N; i++){
bo[i] = 0;
for(int j = 0; j < i; j++){
bo[i] += cm[i + 1][j] * bo[j] % MOD;
bo[i] %= MOD;
}
bo[i] = (-bo[i] * inv[i + 1] % MOD + MOD) % MOD;
}
bo[1] = inv[2];
} LL PowMod(LL a,LL b,LL MOD){//快速幂
LL ret=1;
while(b){
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
} LL solve(LL n, LL m){
LL ans = 0;
for(LL k = 0; k <= m; k++){
ans += (cm[m + 1][k] * bo[k] % MOD) * PowMod(n % MOD, m + 1 - k, MOD) % MOD;
ans %= MOD;
}
ans = ans * inv[m + 1] % MOD;
return ans;
} int main(){
init();
int t;
cin >> t;
while(t--){
LL n, k;
scanf("%I64d %I64d", &n, &k);
printf("%I64d\n", solve(n, k));
}
return 0;
}
51nod1228 序列求和(自然数幂和)的更多相关文章
- 51Node1228序列求和 ——自然数幂和模板&&伯努利数
伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...
- 51nod1228 序列求和(伯努利数)
题面 传送门 题解 \(O(n^2)\)预处理伯努利数 不知道伯努利数是什么的可以看看这篇文章 不过这个数据范围拉格朗日差值应该也没问题--吧--大概-- //minamoto #include< ...
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- CF622F——自然数幂和模板&&拉格朗日插值
题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...
- 自然数幂和&伯努利数(Bernoulli)
二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 51nod1229 序列求和 V2 【数学】
题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) ...
- 51nod_1236_序列求和 V3 _组合数学
51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...
随机推荐
- 【USACO 2.4】Cow Tours (最短路)
题意:给你n(最多150)个点的坐标,给出邻接矩阵,并且整个图至少两个联通块,现在让你连接一条边,使得所有可联通的两点的最短距离的最大值最小. 题解:先dfs染色,再用floyd跑出原图的直径O($n ...
- Model-View-ViewModel for iOS [译]
如果你已经开发一段时间的iOS应用,你一定听说过Model-View-Controller, 即MVC.MVC是构建iOS app的标准模式.然而,最近我已经越来越厌倦MVC的一些缺点.在本文,我将重 ...
- PHP读取CSV文件把数据插入到数据库,本地没有问题,阿里云测试服务器不行
原因是 本地windows和服务器linux编码不同,在代码中不要加编码转换的内容,而是把csv文件另存为utf-8文件上传就可以了,windows和Linux都就可以了. html代码: PHP端代 ...
- 精通Web Analytics 2.0 (6) 第四章:点击流分析的奇妙世界:实际的解决方案
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第四章:点击流分析的奇妙世界:实际的解决方案 到开始实际工作的时候了.哦耶! 在本章中,您将了解到一些最重要的网络分析报告,我将 ...
- POJ2396 Budget
Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 7401 Accepted: 2764 Special Judge D ...
- jedis池的作用
一.jedis池的介绍 相信大家都用过线程池或者是jdbc的连接池,使用池可以减少系统在使用所需对象时创建对象的开销,从而提高系统性能和效率.jedis池也是如此,那么我们该如何使用jedis池呢? ...
- linux系统的学习
通过<鸟哥的linux私房菜>的学习,自己得到的收获! 关机与重启 shutdown -k now "message" 用以发送所有信息,并不是真的关机.还可以登录新的 ...
- Maven+Spring MVC Spring Mybatis配置
环境: Eclipse Neon JDK1.8.0 Tomcat8.0 先决条件: Eclipse先用maven向导创建web工程.参见本站之前随笔. 本机安装完成mysql5:新建用户xuxy03设 ...
- 硬盘下安装Ghost系统简易教程
硬盘安装器下载:https://eyun.baidu.com/s/3c2NvcvI 密码:Cv7F 使用本方法可在没有光驱.光盘.启动U盘等任何系统安装设备的情况下安装Ghost版XP.Win7/8/ ...
- AE开发使用内存图层
AE开发中,有时需要从磁盘中读取一些文件信息如坐标点转为图层并进行分析,此过程并不需要坐标点入库之类的操作,就可以创建一个内存图层解决问题.创建内存图层需要用到InMemoryWorkspaceFac ...