51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html
由于结果对MOD取模,使用逆元
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 2016, INF = 0x3F3F3F3F, MOD = 1000000007; LL bo[N];
LL cm[N][N], inv[N]; void init(){
inv[1] = 1;
for(int i = 2; i < N; i++){
inv[i] = (MOD - MOD / i ) * inv[MOD % i] % MOD;
} memset(cm, 0, sizeof(cm));
cm[0][0] = 1;
for(int i = 1; i < N; i++){
cm[i][0] = 1;
for(int j = 1; j <= i; j++){
cm[i][j] = (cm[i - 1][j - 1] + cm[i - 1][j]) % MOD;
}
} bo[0] = 1;
for(int i = 1; i < N; i++){
bo[i] = 0;
for(int j = 0; j < i; j++){
bo[i] += cm[i + 1][j] * bo[j] % MOD;
bo[i] %= MOD;
}
bo[i] = (-bo[i] * inv[i + 1] % MOD + MOD) % MOD;
}
bo[1] = inv[2];
} LL PowMod(LL a,LL b,LL MOD){//快速幂
LL ret=1;
while(b){
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
} LL solve(LL n, LL m){
LL ans = 0;
for(LL k = 0; k <= m; k++){
ans += (cm[m + 1][k] * bo[k] % MOD) * PowMod(n % MOD, m + 1 - k, MOD) % MOD;
ans %= MOD;
}
ans = ans * inv[m + 1] % MOD;
return ans;
} int main(){
init();
int t;
cin >> t;
while(t--){
LL n, k;
scanf("%I64d %I64d", &n, &k);
printf("%I64d\n", solve(n, k));
}
return 0;
}
51nod1228 序列求和(自然数幂和)的更多相关文章
- 51Node1228序列求和 ——自然数幂和模板&&伯努利数
伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...
- 51nod1228 序列求和(伯努利数)
题面 传送门 题解 \(O(n^2)\)预处理伯努利数 不知道伯努利数是什么的可以看看这篇文章 不过这个数据范围拉格朗日差值应该也没问题--吧--大概-- //minamoto #include< ...
- HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- CF622F——自然数幂和模板&&拉格朗日插值
题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...
- 自然数幂和&伯努利数(Bernoulli)
二项式定理求自然数幂和 由二项式定理展开得 \[ (n+1)^{k+1}-n^{k+1}=\binom {k+1}1n^k+\binom {k+1}2n^{k-1}+\cdots+\binom {k+ ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 51nod1229 序列求和 V2 【数学】
题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) ...
- 51nod_1236_序列求和 V3 _组合数学
51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, ...
随机推荐
- Linux的学习日记
CURL 在Ubuntu下尝试安装通过包安装Node.js的时候有这样一种安装方法, 那么有必要学学CURL的知识了. curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Un ...
- BZOJ 3230: 相似子串
3230: 相似子串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1485 Solved: 361[Submit][Status][Discuss ...
- <<< Google hack
使用Google等搜索引擎对某些特定的网络主机漏洞(通常是服务器上的脚本漏洞)进行搜索,以达到快速找到漏洞主机或特定主机的漏洞的目的. 在SEO优化中,通常使用这种技术达到入侵一些网站挂外链之用.黑帽 ...
- sqlalchemy默认时间
我查到的sqlalchemy默认时间有2种: from sqlalchemy.sql import func time_created = Column(DateTime(timezone=True) ...
- Python调用服务接口
#! /usr/bin/env python # coding=utf-8 ############################################################## ...
- .edmx 文件概述(实体框架)
(一) 认识.edmx文件结构 参考资料: .edmx 文件概述(实体框架) Entity Framework 全面教程详解(转) Entity Framework 教程 Entity Framewo ...
- Authcode()
加密解密函数Authcode(): 1. // 参数解释 2. // $string: 明文 或 密文 3. // $operation:DECODE表示解密,其它表示加密 4. // ...
- STM32F103之DMA
一.背景: 需要使用STM32的DAC,例程代码中用了DMA,对DMA之前没有实际操作过,也很早就想知道DMA到底是什么,因此,看了一下午手册,代码和网上的资料,便有了此篇文章,做个记录. 二.正文: ...
- Linux进程间通信(一): 信号 signal()、sigaction()
一.什么是信号 用过Windows的我们都知道,当我们无法正常结束一个程序时,可以用任务管理器强制结束这个进程,但这其实是怎么实现的呢?同样的功能在Linux上是通过生成信号和捕获信号来实现的,运行中 ...
- js操作数组的一些小技巧
1.从数组中随机获取成员 var items = [12, 548 , 'a' , 2 , 5478 , 'foo' , 8852, , 'Doe' , 2145 , 119]; var rando ...