SortSet

  有序的Set,其实在Java中TreeSet是SortSet的唯一实现类,内部通过TreeMap实现的;而TreeMap是通过红黑树实现的;而在Redis中是通过跳表实现的;

SkipList

  跳表,思想类似平衡二叉树,但又不一样;下面摘了一个介绍:

  skiplist数据结构简介(摘自:https://www.cnblogs.com/Elliott-Su-Faith-change-our-life/p/7545940.html )

  skiplist本质上也是一种查找结构,用于解决算法中的查找问题(Searching),即根据给定的key,快速查到它所在的位置(或者对应的value)。

  我们在《Redis内部数据结构详解》系列的第一篇中介绍dict的时候,曾经讨论过:一般查找问题的解法分为两个大类:一个是基于各种平衡树,一个是基于哈希表。但skiplist却比较特殊,它没法归属到这两大类里面。

  这种数据结构是由William Pugh发明的,最早出现于他在1990年发表的论文《Skip Lists: A Probabilistic Alternative to Balanced Trees》。对细节感兴趣的同学可以下载论文原文来阅读。

skiplist,顾名思义,首先它是一个list。实际上,它是在有序链表的基础上发展起来的。

  我们先来看一个有序链表,如下图(最左侧的灰色节点表示一个空的头结点):

  在这样一个链表中,如果我们要查找某个数据,那么需要从头开始逐个进行比较,直到找到包含数据的那个节点,或者找到第一个比给定数据大的节点为止(没找到)。也就是说,时间复杂度为O(n)。同样,当我们要插入新数据的时候,也要经历同样的查找过程,从而确定插入位置。

  假如我们每相邻两个节点增加一个指针,让指针指向下下个节点,如下图:

  这样所有新增加的指针连成了一个新的链表,但它包含的节点个数只有原来的一半(上图中是7, 19, 26)。现在当我们想查找数据的时候,可以先沿着这个新链表进行查找。当碰到比待查数据大的节点时,再回到原来的链表中进行查找。比如,我们想查找23,查找的路径是沿着下图中标红的指针所指向的方向进行的:

  • 23首先和7比较,再和19比较,比它们都大,继续向后比较。

  • 但23和26比较的时候,比26要小,因此回到下面的链表(原链表),与22比较。

  • 23比22要大,沿下面的指针继续向后和26比较。23比26小,说明待查数据23在原链表中不存在,而且它的插入位置应该在22和26之间。

  在这个查找过程中,由于新增加的指针,我们不再需要与链表中每个节点逐个进行比较了。需要比较的节点数大概只有原来的一半。

  利用同样的方式,我们可以在上层新产生的链表上,继续为每相邻的两个节点增加一个指针,从而产生第三层链表。如下图:

  在这个新的三层链表结构上,如果我们还是查找23,那么沿着最上层链表首先要比较的是19,发现23比19大,接下来我们就知道只需要到19的后面去继续查找,从而一下子跳过了19前面的所有节点。可以想象,当链表足够长的时候,这种多层链表的查找方式能让我们跳过很多下层节点,大大加快查找的速度。

  skiplist正是受这种多层链表的想法的启发而设计出来的。实际上,按照上面生成链表的方式,上面每一层链表的节点个数,是下面一层的节点个数的一半,这样查找过程就非常类似于一个二分查找,使得查找的时间复杂度可以降低到O(log n)。但是,这种方法在插入数据的时候有很大的问题。新插入一个节点之后,就会打乱上下相邻两层链表上节点个数严格的2:1的对应关系。如果要维持这种对应关系,就必须把新插入的节点后面的所有节点(也包括新插入的节点)重新进行调整,这会让时间复杂度重新蜕化成O(n)。删除数据也有同样的问题。

  skiplist为了避免这一问题,它不要求上下相邻两层链表之间的节点个数有严格的对应关系,而是为每个节点随机出一个层数(level)。比如,一个节点随机出的层数是3,那么就把它链入到第1层到第3层这三层链表中。为了表达清楚,下图展示了如何通过一步步的插入操作从而形成一个skiplist的过程(点击看大图):

  从上面skiplist的创建和插入过程可以看出,每一个节点的层数(level)是随机出来的,而且新插入一个节点不会影响其它节点的层数。因此,插入操作只需要修改插入节点前后的指针,而不需要对很多节点都进行调整。这就降低了插入操作的复杂度。实际上,这是skiplist的一个很重要的特性,这让它在插入性能上明显优于平衡树的方案。这在后面我们还会提到。

  根据上图中的skiplist结构,我们很容易理解这种数据结构的名字的由来。skiplist,翻译成中文,可以翻译成“跳表”或“跳跃表”,指的就是除了最下面第1层链表之外,它会产生若干层稀疏的链表,这些链表里面的指针故意跳过了一些节点(而且越高层的链表跳过的节点越多)。这就使得我们在查找数据的时候能够先在高层的链表中进行查找,然后逐层降低,最终降到第1层链表来精确地确定数据位置。在这个过程中,我们跳过了一些节点,从而也就加快了查找速度。

  刚刚创建的这个skiplist总共包含4层链表,现在假设我们在它里面依然查找23,下图给出了查找路径:

  需要注意的是,前面演示的各个节点的插入过程,实际上在插入之前也要先经历一个类似的查找过程,在确定插入位置后,再完成插入操作。

  至此,skiplist的查找和插入操作,我们已经很清楚了。而删除操作与插入操作类似,我们也很容易想象出来。这些操作我们也应该能很容易地用代码实现出来。

  当然,实际应用中的skiplist每个节点应该包含key和value两部分。前面的描述中我们没有具体区分key和value,但实际上列表中是按照key进行排序的,查找过程也是根据key在比较。

红黑树:

  这个介绍就多了,总结一下,一个自平衡的二叉查找树。

【数据结构】红黑树与跳表-(SortSet)-(TreeMap)-(TreeSet)的更多相关文章

  1. 【algo&ds】4.B树、字典树、红黑树、跳表

    上一节内容[algo&ds]4.树和二叉树.完全二叉树.满二叉树.二叉查找树.平衡二叉树.堆.哈夫曼树.散列表 7.B树 B树的应用可以参考另外一篇文章 8.字典树Trie Trie 树,也叫 ...

  2. 【algo&ds】【吐血整理】4.树和二叉树、完全二叉树、满二叉树、二叉查找树、平衡二叉树、堆、哈夫曼树、B树、字典树、红黑树、跳表、散列表

    本博客内容耗时4天整理,如果需要转载,请注明出处,谢谢. 1.树 1.1树的定义 在计算机科学中,树(英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结 ...

  3. 聊聊Mysql索引和redis跳表 ---redis的有序集合zset数据结构底层采用了跳表原理 时间复杂度O(logn)(阿里)

    redis使用跳表不用B+数的原因是:redis是内存数据库,而B+树纯粹是为了mysql这种IO数据库准备的.B+树的每个节点的数量都是一个mysql分区页的大小(阿里面试) 还有个几个姊妹篇:介绍 ...

  4. 自己动手实现java数据结构(九) 跳表

    1. 跳表介绍 在之前关于数据结构的博客中已经介绍过两种最基础的数据结构:基于连续内存空间的向量(线性表)和基于链式节点结构的链表. 有序的向量可以通过二分查找以logn对数复杂度完成随机查找,但由于 ...

  5. 高级数据结构---红黑树及其插入左旋右旋代码java实现

    前面我们说到的二叉查找树,可以看到根结点是初始化之后就是固定了的,后续插入的数如果都比它大,或者都比它小,那么这个时候它就退化成了链表了,查询的时间复杂度就变成了O(n),而不是理想中O(logn), ...

  6. java数据结构——红黑树(R-B Tree)

    红黑树相比平衡二叉树(AVL)是一种弱平衡树,且具有以下特性: 1.每个节点非红即黑; 2.根节点是黑的; 3.每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4.如图所示,如果一个 ...

  7. 第三十三篇 玩转数据结构——红黑树(Read Black Tree)

    1.. 图解2-3树维持绝对平衡的原理: 2.. 红黑树与2-3树是等价的 3.. 红黑树的特点 简要概括如下: 所有节点非黑即红:根节点为黑:NULL节点为黑:红节点孩子为黑:黑平衡 4.. 实现红 ...

  8. Java数据结构——红黑树

    红黑树介绍红黑树(Red-Black Tree),它一种特殊的二叉查找树.执行查找.插入.删除等操作的时间复杂度为O(logn). 红黑树是特殊的二叉查找树,意味着它满足二叉查找树的特征:任意一个节点 ...

  9. 红黑树之 原理和算法详细介绍(阿里面试-treemap使用了红黑树) 红黑树的时间复杂度是O(lgn) 高度<=2log(n+1)1、X节点左旋-将X右边的子节点变成 父节点 2、X节点右旋-将X左边的子节点变成父节点

    红黑树插入删除 具体参考:红黑树原理以及插入.删除算法 附图例说明   (阿里的高德一直追着问) 或者插入的情况参考:红黑树原理以及插入.删除算法 附图例说明 红黑树与AVL树 红黑树 的时间复杂度 ...

随机推荐

  1. gitlab 随笔

    输入: $ git init $ git add . $ git commit -m 'init commit' 绿色部分为gitlab网页的项目创建后下面的ssh路径,也可以通过查看gitlab网页 ...

  2. 【medium】4. Median of Two Sorted Arrays 两个有序数组中第k小的数

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  3. mysql 锁的现象和解决

    2018-12-3 14:43:11 星期一 数据库锁了的现象: 一个进程进程一直在尝试更新, 而且杀不掉, 重启mysql以后还是会有; 一个update语句执行了很久; 写的业务都不可以, 查询也 ...

  4. 帆软报表(finereport)使用row_number ()进行组内排序

    ROW_NUMBER()函数将针对SELECT语句返回的每一行,从1开始编号,赋予其连续的编号.在查询时应用了一个排序标准后,只有通过编号才能够保证其顺序是一致的,当使用ROW_NUMBER函数时,也 ...

  5. R语言︱LDA主题模型——最优主题...

    R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments

  6. 总结fiddle

    fiddler重新发送请求   模拟限速 http://caibaojian.com/fiddler.html fiddler模拟限速的原理 我们可以通过fiddler来模拟限速,因为fiddler本 ...

  7. wx:for获取 data-xxx 自定义的属性

    今天在写wx:for循环时,在事件对象上e.target.dataset上一直拿不到自定义属性 data-id. 示例: <view wx:for='{{list}}' wx:key='{{it ...

  8. WPF使用CefSharp嵌入网页

    1.点击项目应用下的管理NuGet程序包 2.在浏览中输入cefsharp-->查找 CefSharp.Wpf-->点击安装,等待安装完成 3.如果遇到一下问题将解决方案和项目都改成64位 ...

  9. c/c++再学习:C与Python相互调用

    c/c++再学习:Python调用C函数 Python 调用C函数比较简单 这里两个例子,一个是直接调用参数,另一个是调用结构体 C代码 typedef struct { int i1; int i2 ...

  10. app:利用HBuilder打包webpack项目

    1.安装HBuilder 2.将你的项目在HBuilder中打开 3.控制台 打包编译 npm run build 4.新建一个app项目,将项目编译生成的dist文件夹 ,复制到app项目中 5.双 ...