load citys_data.mat  
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
else
D(i,j) = 1e-4;
end
end
end m = 50;
alpha = 1;
beta = 5;
rho = 0.1;
Q = 1;
Eta = 1./D;
Tau = ones(n,n);
Table = zeros(m,n);
iter = 1;
iter_max = 200;
Route_best = zeros(iter_max,n);
Length_best = zeros(iter_max,1);
Length_ave = zeros(iter_max,1); while iter <= iter_max
start = zeros(m,1);
for i = 1:m
temp = randperm(n);
start(i) = temp(1);
end
Table(:,1) = start;
citys_index = 1:n;
for i = 1:m
for j = 2:n
tabu = Table(i,1:(j - 1));
allow_index = ~ismember(citys_index,tabu);
allow = citys_index(allow_index);
P = allow; for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
end
P = P/sum(P);
Pc = cumsum(P);
target_index = find(Pc >= rand);
target = allow(target_index(1));
Table(i,j) = target;
end
end
Length = zeros(m,1);
for i = 1:m
Route = Table(i,:);
for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1));
end
Length(i) = Length(i) + D(Route(n),Route(1));
end
if iter == 1
[min_Length,min_index] = min(Length);
Length_best(iter) = min_Length;
Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:);
else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length);
Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:);
else
Route_best(iter,:) = Route_best((iter-1),:);
end
end Delta_Tau = zeros(n,n);
for i = 1:m
for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
end
Tau = (1-rho) * Tau + Delta_Tau;
iter = iter + 1;
Table = zeros(m,n);
end [Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]); subplot(1,2,1);
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['ACA:利用ACA算法解决TSP优化路径(最短距离:' num2str(Shortest_Length) ')—Jason niu'])
subplot(1,2,2);
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('ACA:各代最短距离与平均距离对比—Jason niu')

ACA:利用ACA解决TSP优化最佳路径问题——Jason niu的更多相关文章

  1. SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu

    %SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu X = [16.4700 96.1000 16.4700 94.4400 20.0900 92.5400 2 ...

  2. ArcGIS 网络分析[1.2] 利用1.1的线shp创建网络数据集/并简单试验最佳路径

    上篇已经创建好了线数据(shp文件格式)链接:点我 这篇将基于此shp线数据创建网络数据集. 在此说明:shp数据的网络数据集仅支持单一线数据,也就是说基于shp文件的网络数据集,只能有一个shp线文 ...

  3. [matlab] 8.蚁群算法解决TSP问题

    城市坐标数据下载  密码:07d5 求遍历这52座城市后最后回到最初城市的最短距离 %% 第9章 蚁群算法及MATLAB实现——TSP问题 % 程序9-1 %% 数据准备 % 清空环境变量 clear ...

  4. 蚁群算法解决TSP问题

    代码实现 运行结果及参数展示 alpha=1beta=5 rho=0.1  alpha=1beta=1rho=0.1 alpha=0.5beta=1rho=0.1 概念蚁群算法(AG)是一种模拟蚂蚁觅 ...

  5. Web前端优化最佳实践及工具集锦

    Web前端优化最佳实践及工具集锦 发表于2013-09-23 19:47| 21315次阅读| 来源Googe & Yahoo| 118 条评论| 作者王果 编译 Web优化Google雅虎P ...

  6. 【读书笔记】读《高性能网站建设指南》及《高性能网站建设进阶指南:Web开发者性能优化最佳实践》

    这两本书就一块儿搞了,大多数已经理解,简单做个标记.主要对自己不太了解的地方,做一些记录.   一.读<高性能网站建设指南> 0> 黄金性能法则:只有10%~20%的最终用户响应时间 ...

  7. C++实现禁忌搜索解决TSP问题

    C++实现禁忌搜索解决TSP问题 使用的搜索方法是Tabu Search(禁忌搜索) 程序设计 1) 文件读入坐标点计算距离矩阵/读入距离矩阵 for(int i = 0; i < CityNu ...

  8. Html代码seo优化最佳布局实例讲解

    搜索引擎对html代码是非常优化的,所以html的优化是做好推广的第一步.一个符合seo规则的代码大体如下界面所示. 1.<!–木庄网络博客–> 这个东西是些页面注释的,可以在这里加我的& ...

  9. C# 解决组合优化问题

    Google Optimization Tools介绍 Google Optimization Tools(OR-Tools)是一款专门快速而便携地解决组合优化问题的套件.它包含了: 约束编程求解器. ...

随机推荐

  1. 图论(最短路&最小生成树)

    图论 图的定义与概念 图的分类 图,根据点数和边数可分为三种:完全图,稠密图与稀疏图. 完全图,即\(m=n^2\)的图\((m\)为边数,\(n\)为点数\()\).如: 1 1 0 1 2 1 1 ...

  2. pgsql 并行相关配置

  3. 用servlet校验密码2

    首先,mysql真的让我有点扎心,虽然安装了但是之前没用过 第一个 初始密码给我设了fj4X1=).......一长串字符,怎么记得住嘛,再说,我记那玩意儿干啥呀 所以 果断决定改个不费脑子的密码 但 ...

  4. (最短路 Floyd) P2910 [USACO08OPEN]寻宝之路Clear And Present Danger 洛谷

    题意翻译 题目描述 农夫约翰正驾驶一条小艇在牛勒比海上航行. 海上有N(1≤N≤100)个岛屿,用1到N编号.约翰从1号小岛出发,最后到达N号小岛. 一张藏宝图上说,如果他的路程上经过的小岛依次出现了 ...

  5. 锁(1):spin_lock & mutex_lock的区别? .

    为什么需要内核锁? 多核处理器下,会存在多个进程处于内核态的情况,而在内核态下,进程是可以访问所有内核数据的,因此要对共享数据进行保护,即互斥处理   有哪些内核锁机制? (1)原子操作 atomic ...

  6. 剑指Offer_编程题_23

    题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. class Solution { public: ...

  7. crm 数据展示 和分页思想(一)

    1. 数据的展示 数据通过ORM查询出来 对象列表 QuerySet 1. 普通的字段 对象.字段名 ——> 数据库中的值 <td>{{ customer.phone }}</ ...

  8. [Android] Android 锁屏实现与总结 (二)

    上接: [Android] Android 锁屏实现与总结 (一) 系列文章链接如下: [Android] Android 锁屏实现与总结 (一) [Android] Android 锁屏实现与总结 ...

  9. [Android] Android 锁屏实现与总结 (一)

    实现锁屏的方式有多种(锁屏应用.悬浮窗.普通Activity伪造锁屏等等).但国内比较主流并且被广泛应用的Activity伪造锁屏方式. 实例演示图片如下: 系列文章链接如下: [Android] A ...

  10. How far away ? HDU - 2586 【LCA】【RMQ】【java】

    题目大意:求树上任意两点距离. 思路: dis[i]表示i到根的距离(手动选根),则u.v的距离=dis[u]+dis[v]-2*dis[lca(u,v)]. lca:u~v的dfs序列区间里,深度最 ...