Review: Conditional LMs

Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it performs well.

And we use the Decoder network(also a RNN), and use the ‘beam search’ algorithm to generate the target statement word by word.

The above network is a translation model.But it still needs to optimizer.

A very essential part of the model is the [Attention mechanism].

Conditional LMs with Attention

First: talk about the [condition]

In last blog, we compress a lot of information in a finite-sized vector and use it as the condition. That is to say, in the ‘Decoder’, for each input we use this vector as the condition to predict the next word.

But is it really correct?

An obvious thing is that a finite-sized vector cannot contain all the information since the input sentence could have a very one length. And gradients have a long way to travl so even LSTMs could forget!

In Translation Question, we can solve the problem by this:

Represent a source sentence as a matrix whose size can be changeable.

Then Generate a target sentence from the matrix. (As the condition and the condition is transformed form that matrix)

So how does this do?

The very simpal way to fulfill that is [With Concatenation].

We have already known that the words can be represented by ‘embedding’ such as Word2Vec. And all the embeddings have the same size. For a sentence composed by n words, we can just put each word’s embedding together. So the matrix size is |vocabulary size|*n, which n is the length of sentence. That’s a really easy solution but it is useful. E.g.

Another solution proposed by Gehring et al. (2016,FAIR) is [With Convolutional Nets].

It is to say, we use all embedding of the word from the sentence to form the concatenation matrix (just like the above method), and then we use a CNN to handle this matrix using some filters. And final we also generate a new matrix to represent the information. And in my opinion, this is a bit like extracting advanced features from image processing. E.g.

The most important method is [using the Bidirectional RNNs].

For one side, we use a RNN to handle the embedding, and we get n hidden layers which n is the length of the word.

For another side, we use another RNN to handle the embedding, but we reverse the input and finally we also get n hidden layers.

We put the 2n hidden layers together to generate the conditional matrix. E.g.

There are some other ways needed to be founded.

So next to the important part: how to use the ‘Attention model’ and use the attention to generate the condition vector form the condition matrix F.

Firstly, considering the decoder RNN:

We have a ‘start hidden layer’ and then generate the next hidden layer using the input x and we still need a conditional vector.

Suppose we also had an attention vector a. We can generate the condition vector by doing this:

c = Fa. Where F is the matrix and a is the attention vector. This can be understood as weighting the conditional matrix so that we can pay more attention to the contents of a certain sentence.

E.g.

So How to generate the Attention Vector?

That is, how do we compute a.

We can do by the following method:

For the time t, we know the hidden layer Ht-1, and we do linear transformation to it to generate a vector r. ( r = VHt-1) V is the learned parameter. Then we take dot product with every column in the source matrix to compute the attention energy a. ( a = F.T*r). So we generate the attention vector a by using a softmax to Exponentiate and normalize it to 1.

That is a simplified version of Bahdanau et al.’s solution. Summary of it:

Another complex way to generate the attention vector is to use the [Nonlinear Attention-Energy Model].

Getting the r above, ( r = VHt-1) we generate a by: a = v.T * tanh(WF + r). Where v W and V is the learned parameter. How useful of the r is not to verify.

Summary

We put it all together and this is called the conditional LM with attention.

 

Attention in machine translation.

Add attention to seq2seq model translation: +11 BLEU.

An improvement in computing:

Note the difference form the above model. But whether it is useful is not sure.

 

About Gradients

We use the Gradient Descent.

 

Comprehension

Cho’s question: does a translator read and memorize the input sentence/document and then generate the output?

• Compressing the entire input sentence into a vector basically says “memorize the sentence”

• Common sense experience says translators refer back and forth to the input. (also backed up by eyetracking studies)

 

Image caption generation with attention: brief introduction

The main idea is that: we encode the picture to a matrix F and use it generate some attention and finally use the attention to generate the caption.

Generate matrix F:

Attention “weights” (a) are computed using exactly the same technique as discussed above.

Other techinques: Stochastic hard attention(sampling matrix F idea and not like the weighting matrix F idea). Learning Hard Attention. To be honesty, I don't know much about this.

【NLP】Conditional Language Modeling with Attention的更多相关文章

  1. 【NLP】Conditional Language Models

    Language Model estimates the probs that the sequences of words can be a sentence said by a human. Tr ...

  2. 【NLP】Tika 文本预处理:抽取各种格式文件内容

    Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重 ...

  3. [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录

    [NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理  原贴:   https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...

  4. 【NLP】前戏:一起走进条件随机场(一)

    前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有 ...

  5. 【NLP】基于自然语言处理角度谈谈CRF(二)

    基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  6. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

  7. 【NLP】基于统计学习方法角度谈谈CRF(四)

    基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  8. 【NLP】条件随机场知识扩展延伸(五)

    条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应 ...

  9. 【NLP】Attention Model(注意力模型)学习总结

    最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制( ...

随机推荐

  1. es6 Module语法

    export 命令 1.概念 export用于定义要输出的变量(let.var.const.function.class),定义的变量与值是动态绑定关系. 2.命令格式 1. export 变量定义 ...

  2. 在Dynamics 365中使用SURVEYJS代替对话(Dialog)制作话术

    本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复269或者20180318可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me ...

  3. 35.Odoo产品分析 (四) – 工具板块(6) – 午餐管理(1)

    查看Odoo产品分析系列--目录 很多公司为都会为员工提供午餐.然而,公司内部的午餐需要适当的管理,特别是在员工或供应商数量非常重要的时候."午餐订单"模块的开发,使管理更容易,也 ...

  4. nginx配置proxy_pass URL末尾加与不加/(斜线)的区别

    nginx在配置proxy_pass的时候 URL结尾加斜线(/)与不加的区别和注意事项 假设访问路径的 /pss/bill.html 加/斜线的情况 location /pss/ { proxy_p ...

  5. Spring 事务与脏读、不可重复读、幻读

    索引: 目录索引 参看代码 GitHub: 1.Spring 事务 2.事务行为 一.Spring 事务: Spring 的事务机制是用统一的机制来处理不同数据访问技术的事务处理. Spring 的事 ...

  6. MongoDB副本集及C#程序的连接配置

    1.副本集 高可用是绝大多数数据库管理系统的核心目标之一.如果要想生产数据在发生故障后依然可用,就需要确保为生产数据库多部署一台服务器.MongoDB副本集提供了数据的保护.高可用和灾难恢复的机制. ...

  7. Python函数(一)之杵臼之交

    Python函数 函数的作用:对功能进行封装,减少重复代码,方便维护,流程清晰明了,易于理解. 函数的结构: def 函数名():      函数体       return语句 函数的返回值: 可以 ...

  8. Type '' cannot conform to protocol '' because it has requirements that cannot be satisfied

    我有一个Objective-C协议,我试图在Swift类中实现.例如: @class AnObjcClass; @protocol ObjcProtocol <NSObject> - (v ...

  9. Win10解除网速限制让网速飞起来

    Win10隐藏了20%的网速,下面叫你怎么释放它: 1.按Win+R调出运行,输入gpedit.msc点击确定; 2.点击windows设置,右击基于策略Qos,选择高级Qos设置: 3.勾选如图方框 ...

  10. Tomcat与Nginx服务器的配合使用及各自的区别

    Nginx常用做静态内容服务和反向代理服务器,以及页面前端高并发服务器.适合做负载均衡,直面外来请求转发给后面的应用服务(tomcat ,django什么的),Tomcat更多用来做做一个应用容器,让 ...