Review: Conditional LMs

Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it performs well.

And we use the Decoder network(also a RNN), and use the ‘beam search’ algorithm to generate the target statement word by word.

The above network is a translation model.But it still needs to optimizer.

A very essential part of the model is the [Attention mechanism].

Conditional LMs with Attention

First: talk about the [condition]

In last blog, we compress a lot of information in a finite-sized vector and use it as the condition. That is to say, in the ‘Decoder’, for each input we use this vector as the condition to predict the next word.

But is it really correct?

An obvious thing is that a finite-sized vector cannot contain all the information since the input sentence could have a very one length. And gradients have a long way to travl so even LSTMs could forget!

In Translation Question, we can solve the problem by this:

Represent a source sentence as a matrix whose size can be changeable.

Then Generate a target sentence from the matrix. (As the condition and the condition is transformed form that matrix)

So how does this do?

The very simpal way to fulfill that is [With Concatenation].

We have already known that the words can be represented by ‘embedding’ such as Word2Vec. And all the embeddings have the same size. For a sentence composed by n words, we can just put each word’s embedding together. So the matrix size is |vocabulary size|*n, which n is the length of sentence. That’s a really easy solution but it is useful. E.g.

Another solution proposed by Gehring et al. (2016,FAIR) is [With Convolutional Nets].

It is to say, we use all embedding of the word from the sentence to form the concatenation matrix (just like the above method), and then we use a CNN to handle this matrix using some filters. And final we also generate a new matrix to represent the information. And in my opinion, this is a bit like extracting advanced features from image processing. E.g.

The most important method is [using the Bidirectional RNNs].

For one side, we use a RNN to handle the embedding, and we get n hidden layers which n is the length of the word.

For another side, we use another RNN to handle the embedding, but we reverse the input and finally we also get n hidden layers.

We put the 2n hidden layers together to generate the conditional matrix. E.g.

There are some other ways needed to be founded.

So next to the important part: how to use the ‘Attention model’ and use the attention to generate the condition vector form the condition matrix F.

Firstly, considering the decoder RNN:

We have a ‘start hidden layer’ and then generate the next hidden layer using the input x and we still need a conditional vector.

Suppose we also had an attention vector a. We can generate the condition vector by doing this:

c = Fa. Where F is the matrix and a is the attention vector. This can be understood as weighting the conditional matrix so that we can pay more attention to the contents of a certain sentence.

E.g.

So How to generate the Attention Vector?

That is, how do we compute a.

We can do by the following method:

For the time t, we know the hidden layer Ht-1, and we do linear transformation to it to generate a vector r. ( r = VHt-1) V is the learned parameter. Then we take dot product with every column in the source matrix to compute the attention energy a. ( a = F.T*r). So we generate the attention vector a by using a softmax to Exponentiate and normalize it to 1.

That is a simplified version of Bahdanau et al.’s solution. Summary of it:

Another complex way to generate the attention vector is to use the [Nonlinear Attention-Energy Model].

Getting the r above, ( r = VHt-1) we generate a by: a = v.T * tanh(WF + r). Where v W and V is the learned parameter. How useful of the r is not to verify.

Summary

We put it all together and this is called the conditional LM with attention.

 

Attention in machine translation.

Add attention to seq2seq model translation: +11 BLEU.

An improvement in computing:

Note the difference form the above model. But whether it is useful is not sure.

 

About Gradients

We use the Gradient Descent.

 

Comprehension

Cho’s question: does a translator read and memorize the input sentence/document and then generate the output?

• Compressing the entire input sentence into a vector basically says “memorize the sentence”

• Common sense experience says translators refer back and forth to the input. (also backed up by eyetracking studies)

 

Image caption generation with attention: brief introduction

The main idea is that: we encode the picture to a matrix F and use it generate some attention and finally use the attention to generate the caption.

Generate matrix F:

Attention “weights” (a) are computed using exactly the same technique as discussed above.

Other techinques: Stochastic hard attention(sampling matrix F idea and not like the weighting matrix F idea). Learning Hard Attention. To be honesty, I don't know much about this.

【NLP】Conditional Language Modeling with Attention的更多相关文章

  1. 【NLP】Conditional Language Models

    Language Model estimates the probs that the sequences of words can be a sentence said by a human. Tr ...

  2. 【NLP】Tika 文本预处理:抽取各种格式文件内容

    Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重 ...

  3. [转]【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理 阅读目录

    [NLP]干货!Python NLTK结合stanford NLP工具包进行文本处理  原贴:   https://www.cnblogs.com/baiboy/p/nltk1.html 阅读目录 目 ...

  4. 【NLP】前戏:一起走进条件随机场(一)

    前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有 ...

  5. 【NLP】基于自然语言处理角度谈谈CRF(二)

    基于自然语言处理角度谈谈CRF 作者:白宁超 2016年8月2日21:25:35 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  6. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

  7. 【NLP】基于统计学习方法角度谈谈CRF(四)

    基于统计学习方法角度谈谈CRF 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务 ...

  8. 【NLP】条件随机场知识扩展延伸(五)

    条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应 ...

  9. 【NLP】Attention Model(注意力模型)学习总结

    最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制( ...

随机推荐

  1. QT解析和组装json

    json这个小朋友熟悉又陌生,今天给同学们好好讲讲QT是如何使用json的,一句话:简单 1.什么是json? A:json就是个<key,value>字符串 ①一个json对象 {&qu ...

  2. (办公)SpringBoot与mybatisGenerator自动生成.

    20181206-自动生成,少写一点代码. (以下的内容主要参考csdn上的<[完美]SpringBoot+Mybatis-Generator自动生成>这篇文章,还有简书上的mbatis- ...

  3. 如何在MongoDB设计存储你的数据(JSON化)?

    第一步 定义要描述的数据集 当我们决定将数据存储下来的时候,我们首先要回答的一个问题就是:“我打算存储什么样的数据?这些数据之间有什么关系?实体之间有什么关系?实体的属性之间有什么关系”. 为了说明问 ...

  4. MongoDB 最大连接数 设置失效的异常分析

    背景介绍: 查询MongoDB配置参数,可以知道关于最大连接数的参数是maxConns.但是连接实例后,查看支持的最大连接数,还是默认的819. 说明:最大连接数是由maxConn (maxIncom ...

  5. c/c++ linux 进程间通信系列2,使用UNIX_SOCKET

    linux 进程间通信系列2,使用UNIX_SOCKET 1,使用stream,实现进程间通信 2,使用DGRAM,实现进程间通信 关键点:使用一个临时的文件,进行信息的互传. s_un.sun_fa ...

  6. 周一01.3Python多版本共存&pip环境变量设置

    python多版本共存 1.分别安装Python2.7(手动添加环境变量)与Python3.6 2.分别进入Py2与Py3文件夹中,复制python.exe,重命名为python2.exe和pytho ...

  7. Linux中删除特殊名称文件的多种方式

    今日分享:我们在肉体的疾病方面花了不少钱,精神的病害方面却没有花什么,现在已经到了时候,我们应该有不平凡的学校.--<瓦尔登湖> 前言 我们都知道,在linux删除一个文件可以使用rm命令 ...

  8. Managing Large State in Apache Flink®: An Intro to Incremental Checkpointing

    January 23, 2018- Apache Flink, Flink Features Stefan Richter and Chris Ward Apache Flink was purpos ...

  9. css实现单行(多行)文本溢出显示 ...

    overflow: hidden; text-overflow:ellipsis; white-space: nowrap; 当然还需要加宽度width属来兼容部分浏览. 以上为单行文本溢出===== ...

  10. 文本分类实战(九)—— ELMO 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...