【UER #8】雪灾与外卖
题解:
这个东西的模型是个费用流
但是直接跑费用流能拿到5分的高分
$(nm)*(nm)*log{nm}$
考虑优化一下建图
我们可以不用对每个店和人都连边
而是对人和店都连一条链
然后对每个人连店刚好比它大和比它小的两个点
这样有25分
我们容易发现每个店的区间都是连续并且递增的
于是可以dp
单调队列优化之后就可以有50分
再之后的做法就比较神奇
考虑先将每个店容量拆成1
我们将店和人按照坐标排序
由于每个人都是要匹配的,所以我们可以直接将它和前面的匹配(如果没有看成和无限远处匹配)
然后当我们加入一家店时,我们看一看有没有人换成和它匹配更优,没有就直接插入
具体如何实现呢
我们对店和人分别维护一个堆
一个人去匹配店的时候,产生的代价为$x+y$ (x为坐标,y为店堆顶)
匹配完后我们要支持人的反悔操作(容易yy店是不可能反悔的)
也就是往人的堆里插入$-(x+y)-x$
一个店去匹配人的时候,产生的代价为$x+y+w$(y为坐标,w为花费,x为人堆顶)
匹配完后要支持人和店的反悔
人的反悔是$-(y+x坐标+w)-x坐标$=$-y-w$
店的反悔我们可以通过推一下反悔后的式子(注意反悔时我们要将它现在匹配的那个人匹配的店变回之前匹配的店)$-x-2*y$
刚开始在店1 人1 店2 人2 店3 店4(假设店对两个人的花费都是从大到小)
这个例子上纠结了一下(人和店1的匹配被弹栈了之后怎么办)
后来发现 如果出现店1 人1 店2的话(且店2比店1优) 一定不存在一种时候可以直接从店1 人1的匹配变成人1和其他店
因为如果后面有店一定先让人2匹配,而一旦人2匹配了人1就匹配了店2
然后考虑一下满分做法
没有了ci的限制 我们就不能拆了 对于人的操作 时间复杂度是对的
而对于物品的操作,时间复杂度的瓶颈在于对每个人可能每个位置的店都要算一次
我们发现对于同一个位置的店的人的反悔操作,我们可以放在一起,都只跟店有关
而对于多余的店,也可以放在一起
因为每次操作只能使块数增加1 所以最多减少n+m次
复杂度$(n+m)log$
我是照着这份代码看懂的。。
#include<bits/stdc++.h>
using namespace std;
#define FOR(a,b,c) for(int a=(b),a##_end__=(c);a<a##_end__;++a)
#define INF 0x3f3f3f3f3f3f3f3fLL
template<class T>inline bool chkmin(T&a,T const&b){return b<a?a=b,true:false;}
template<class T>inline bool chkmax(T&a,T const&b){return a<b?a=b,true:false;}
const int M=;
priority_queue<pair<long long,int>,vector<pair<long long,int>>,greater<pair<long long,int>>>A,B;
int X[M],Y[M],W[M],C[M];
long long ans,cnt;
int n,m;
void push_x(long long x){
long long y;
if(B.empty()) y=INF;
else y=B.top().first;
ans+=x+y;
A.push(make_pair(-*x-y,));
if(!B.empty()){
int f=B.top().second;
B.pop();
if(<f) B.push(make_pair(y,f-));
}
}
void push_y(long long y,long long w,int c){
int m=;
while(c!=m and !A.empty() and y+w+A.top().first<){
long long x=A.top().first;
int f=A.top().second,t=min(c-m,f);
ans+=t*(x+y+w);
A.pop();
if(t!=f) A.push(make_pair(x,f-t));
B.push(make_pair(-x-*y,t));
m+=t;
}
if(m) A.push(make_pair(-y-w,m));
if(c!=m) B.push(make_pair(-y+w,c-m));
}
int main(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&m);
FOR(i,,n) scanf("%d",X+i);
FOR(i,,m) scanf("%d%d%d",Y+i,W+i,C+i);
FOR(i,,m) cnt+=C[i];
if(cnt<n) return puts("-1"),;
int i=,j=;
while(i<n and j<m){
if(X[i]<Y[j]) push_x(X[i]),++i;
else push_y(Y[j],W[j],C[j]),++j;
}
while(i<n) push_x(X[i]),++i;
while(j<m) push_y(Y[j],W[j],C[j]),++j;
printf("%lld\n",ans);
return ;
}
【UER #8】雪灾与外卖的更多相关文章
- [UOJ455][UER #8]雪灾与外卖——堆+模拟费用流
题目链接: [UOJ455]雪灾与外卖 题目描述:有$n$个送餐员(坐标为$x_{i}$)及$m$个餐厅(坐标为$y_{i}$,权值为$w_{i}$),每个送餐员需要前往一个餐厅,每个餐厅只能容纳$c ...
- UOJ #455 [UER #8]雪灾与外卖 (贪心、模拟费用流)
题目链接 http://uoj.ac/contest/47/problem/455 题解 模拟费用流,一个非常神奇的东西. 本题即为WC2019 laofu的讲课中的Problem 8,经典的老鼠进洞 ...
- uoj455 【UER #8】雪灾与外卖
http://uoj.ac/problem/455 题解: https://blog.csdn.net/litble/article/details/88410435 https://www.mina ...
- 题解-UOJ 455雪灾与外卖
Problem \(\mathrm{UOJ~455}\) 题意概要:一根数轴上有 \(n\) 只老鼠与 \(m\) 个洞,每个洞有费用与容量限制,要求每只老鼠要进一个洞且每个洞的老鼠不超过自身的容量限 ...
- NOIWC2019 冬眠记
冬眠 由于THUWC考太差了没啥心情做事…… Day -1 报到日前一天晚上去看了看宿舍表,发现周围全是集训队,隔壁就是栋爷.高队和lca,再隔壁是zzq和wxh……吓傻了(本校buff这么好吗) D ...
- [codevs 2800]送外卖
题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n个不同的客户的手上.n个不同的客户分别在1~n个编号的城市中.送外卖的从0号城市出发,然后n个城市都要走一 ...
- codevs2800 送外卖
题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n个不同的客户的手上.n个不同的客户分别在1~n个编号的城市中.送外卖的从0号城市出发,然后n个城市都要走一 ...
- 项目vue2.0仿外卖APP(一)
最近用vue.js做一个仿饿了么外卖APP的项目,现在也把流程啊什么的暂时先整理一下在这个博客上面. 当然,这个过程会有点长,不过确实能学到很多东西. 话不多说,马上开始吧. 1.项目介绍 选用当前最 ...
- 【CodeVS2800】 送外卖 最短路+状压DP
首先求出各点之间的最短路,floyed即可,注意是0-n. 然后考虑状压,f[i][j]表示状态为i时访问j点时的最短路和,1表示访问,0表示未访问,然后第j个点所在的位置就是(1<<j) ...
随机推荐
- hyper发送表单数据
前言 某个美丽的下午,运维把服务器上的nginx升级了,http协议也变成了http2.0,我本地的requests再也连接不到服务器,然后就找到了额hyper 但是hyper的文档写的很简单,而且相 ...
- [Treap][学习笔记]
平衡树 平衡树就是一种可以在log的时间复杂度内完成数据的插入,删除,查找第k大,查询排名,查询前驱后继以及其他许多操作的数据结构. Treap treap是一种比较好写,常数比较小,可以实现平衡树基 ...
- 把xlsx变成CSV
import pandas as pd import numpy as np import matplotlib.pyplot as plt #df.to_excel('C:/Users/Asus/D ...
- django-crontab实现定时任务
django-crontab实现服务端的定时任务 安装 pip install django-crontab 在Django项目中使用 settings.py INSTALLED_APPS = ( ' ...
- fastjson存在乱序的问题
现象及原因 通常来讲,在使用json数据格式时一般不需要要求数据有序.但凡事都有例外,针对查询时序数据这样一个场景,就必须要求服务器端返回的数据是按时间有序的,否则前端在进行数据展示时就会有问题. 项 ...
- Linux VPS通过安装CPULimit来限制CPU使用率
说明:我们手上经常有很多廉价的VPS,有时候使用某些软件应用的时候,会出现CPU跑满的情况,而长时间跑满会被VPS商家停掉,所以这里我们需要想办法来限制进程CPU使用率,这里就说个教程. 简介 cpu ...
- R语言数据集的技术
特征值选择技术要点 特征值选择技术要点(特征值分解) 作者:王立敏 文章来源:xiahouzuoxin 一.特征值分解 1.特征值分解 线性代数中,特征分解(Eigendecomposition),又 ...
- MySQL中使用group_concat()函数数据字符过长报错的问题解决方法
最近在办公软件项目,在开发权限指标遇到一个问题:我们系统的一些逻辑处理是用存储过程实现的,但是有一天客户反馈说权限指标分配报错,查了分配的权限数据牵扯到的数据权限基础资源,没有问题.权限指标分配的存储 ...
- 问题:强制关闭Redis快照导致不能持久化
运行Redis发生错误:"MISCONF Redis is configured to save RDB snapshots, but is currently not able to pe ...
- php获取脚本执行的参数
在看PHP文档到预定义变量时碰到了$argc和$argv,顺手记录下 getopt()从命令行参数列表中获取选项 $arg = getopt('d:n:'); //只接收d n之后的参数 $num = ...