Notes for "Python in a Nutshell"
Introduction to Python
Wrap C/C++ libraries into Python via Cython and CFFI.
Python implementations for production quality:
CPython (Classic Python)
- Implemented in C
- Python Software Foundation License V2, compatible with GPL, proprietary, free, BSD/Apache/MIT.
Jython: on JVM
IronPython: support for .NET
PyPy: generate native machine code “just in time” when running the program. Thus it has substantial advantages in speed and memory management.
Pyston
IPython
- It enhances the standard CPython with more powerful and convenient interactive use.
- Abbreviated function call syntax.
- magics
- shell escapes
- Use ? to query object’s documentation.
- IPython Notebook now renamed as the Jupyter Notebook.
Anaconda distribution
- It includes enormous number of preconfigured and tested modules.
- It contains all the dependencies.
Nuitka: a compiler which converts Python to C++.
The Python Language
Lexical structure
Python statements don’t need ; to terminate.
line continuation symbol: \.
Blocks are defined via indentation. Use white space to indent instead of TAB.
Language structure
Tokens
- Identifiers: specify the name of a variable, function, class, module etc.
- Keywords
- Operators
- Delimiters
- Literals
Statements
- Simple statements
- Compound statements (as a block)
Data types
Numbers
Integers
- Decimal literal (no prefix):
1, 2, 3 - Binary literal (0b prefix):
0b01001 - Octal literal (0o prefix):
0o13 - Hexadecimal literal (0x prefix):
0x17
- Decimal literal (no prefix):
Floating point numbers
Complex numbers: use $j$ as the imaginary unit.
Sequences
Iterable concept (an abstract higher level than sequences)
- All sequence types in Python are iterables, which represent linear data structure as the concepts commonly used in C++ generic programming.
- An iterable is bounded, due to the limited computer memory.
Except string type, sequences in Python are neither simple arrays as in C, nor template-based containers which can include only one type of data as in C++. They are generic containers which can include any type of data.
Strings
A string in Python is a sequence of byte objects.
A string is an immutable sequence.
Triple-quoted string: a whole paragraph of strings can be directly quoted without the need of a line-continuation symbol \. This is the so-called "here-document" in Bash.
Raw string
- Starts with r or R.
- Escape characters are not interpreted.
Tuples
- A tuple is an immutable ordered sequence of items.
- Tuple literal with only one item needs a trailing comma.
- Use parentheses to wrap a tuple literal.
() # Empty tuple literal
(1,) # Singleton tuple literal
(1, 'good', 3) # Normal tuple literal
tuple() # Create an empty tuple.
tuple(iterable) # Create a tuple from an iterable.
tuple('hello') # Create a tuple from a string sequence, which is also an iterable.
Lists
- A list is a mutable ordered sequence of items.
- A singleton list literal does not need a trailing comma.
- Use brackets to wrap a list literal.
[2, 'a', 5] # Normal list literal
[100] # Singleton list literal
[] # Empty list literal
list() # Create an empty list.
list(iterable) # Create a list from an iterable.
list('hello') # Create a list from a string sequence, which is also an iterable.
Sets
Unordered collections of unique items. This is consistent with the set concept in mathematics.
Two types of sets in Python
set (non-frozen set)
- Mutable
- Not hashable
- frozenset can be an element of a set.
frozenset
- Immutable
- Hashable
- frozenset can be an element of a frozenset.
Use braces to wrap a set literal.
{5, 6, 'hello'}
{10}
# {}: Empty set literal is invalid.
set() # Create an empty set from an iterable.
set(iterable) # Create a set from an iterable.
frozenset() # Create an empty frozenset from an iterable.
frozenset(iterable) # Create a frozenset from an iterable.
Dictionaries
The concept of mapping
- Key-value pair
- Mutable
- Unordered
A collection of key/value pairs.
Keys in a dictionary
- Can be different types
- Hashable (therefore, a frozenset can be the data structure for keys in a dictionary.)
Values in a dictionary
- Can be different types
{'name':'Mary', 'gender':60} # Normal dictionary literal
{} # Empty dictionary literal
dict() # Empty dictionary
dict(name='Mary', gender=60)
dict([('name', 'Mary'), ('gender', 60)]) # Dictionary constructed from a list of tuples.
dict.fromkeys(iterable, value)
None: a null object.
Callables: functions
- Built-in functions
- User-defined functions
- Types: which can be considered as the constructor of a class.
- Methods
Boolean
Sequence operations
Sequences in general
len:to get the length of any container.maxminsum+: the operators for concatenation of two sequences.S * n: a sequence multiplied by an integer, then the result sequence is the concatenation of n copies of S.x in S: test if the element x is in the sequence S.Sequence slicing
S[i:j]: N.B. the elementS[j]is excluded.S[i:j:k]: i is the starting index, j is the pass-the-end index, k is the stride.
Lists
x = [1, 2, 3, 4]
del x[1] # Delete the 2nd element from x.
x[2:3] = [] # Delete the 3rd element from x.
x[2:2] = ['a','b'] # Insert a list ['a', 'b'] before the 2nd element.
Set operations
Test membership:
k in SSet methods
S.copy(): shallow copy of a set.Common set operations
S1.intersection(S2)S1.union(S2)S1.difference(S2)S1.symmetric_difference(S2): $\{x \vert x \notin S1 \cap S2\}$S1.issubset(S2)S1.issuperset(S2)
Dictionary operations
Test membership:
k in DIndexing a dictionary
- Use key as the index
d = {'1': 'hello', '2':'world'}
d['1']
d['2']
Dictionary methods
D.copy(): shall copy of a dictionary.D.get(k): get the value corresponding to the key k.D.items(): returns an iterable of typedict_items.D.keys(): returns an iterable of typedict_keys.D.values(): returns an iterable of typedict_values.
Control flow statements
if statement
if predicate:
statement
elif predicate:
statement
...
else:
statement
while statement
while expression:
statement
...
for statement
# General form.
for element in iterable:
statement
...
# Accept multiple values by unpacking the assignment.
for key, value in dict_items:
statement
...
The usage of iterator in a for loop
# The equivalent formulation of the for loop using iterator.
# iter returns the iteration before the first item in the linear data.
current_iter = iter(iterable)
while True:
# N.B. next first move the iterator to the next, then returns the object the iterator points to. When the iterator passes then end of the linear data, an exception StopIteration is raised.
try: current_object = next(current_iter)
except StopIteration: break
print(current_object)
The usage of range in a for loop
range(start, stop, stride): the generated range does not include stop.
In v3, range returns an object similar to xrange in v2. Therefore, to obtain a normal list, the list function should be called:
# Generate a normal list from a range.
list(range(1, 11))
List comprehension
It is used for generating a list by iterating through a list and performing some operations if some condition is satisfied.
my_list = list(range(1, 11))
print([x + 1 for x in my_list])
print([x + 1 for x in my_list if x >= 5])
my_list_of_sublists = [list(range(1, 6)), list(range(5, 11)), list(range(10, 16))]
print([x + 1 for sublist in my_list_of_sublists for x in sublist])
Set comprehension
Similar as the list comprehension, but use bracket to wrap the resulting set.
Dictionary comprehension
Similar as the set comprehension, but the returned element should be a pair.
Functions
- Functions are objects in Python.
def function_name(parameters):
function body
...
Parameters
The names of parameters exist in the function's local namespace.
Types of parameters
Positional parameters: mandatory parameters.
Named parameters: optional parameters.
- Declaration in the function signature:
identifier = expression - The default value assigned to a named parameter is only initialized once in a Python program.
- If the default value assigned to a named parameter is a mutable, its value can be changed inside the function body.
- Declaration in the function signature:
Special forms
*args: it is used to collect any extra positional arguments into a tuple.**kwds: it is used to collect any extras named arguments into a dictionary.
Keyword-only parameters (V3)
- When the function is called, keyword-only parameters must appear in the form of "identifier = expression", otherwise they should not appear.
- They come between
*argsand**kwds. If there is no*args, a*should be used as a placeholder. - They can be specified in the parameter list with or without a default value. Then, the former is mandatory parameters and the latter is an optional parameters.
Attributes of function objects
__name__: identifier stringed the function name.__defaults__: a tuple of the optional parameters, if there are any.__doc__: docstring of the function. Use triple-quotation for the docstring.
Namespaces
global: it is used to declare a name to be used is in the global name space.nonlocal(v3 only): it is used to declare a name to be searched in the lexical scope.- Nested function can access values from outer local variables, which is known as a closure. In this way, a function can be dynamically constructed depending on some variables.
Lambda expressions
It is useful for creating a simple function on-the-fly.
lambda parameters: expression
Recursion
Python dose not implement the tail-recursion as in List or Scheme.
Notes for "Python in a Nutshell"的更多相关文章
- study notes for python
some useful materials Python完全新手教程 http://www.cnblogs.com/taowen/articles/11239.aspx (from taowen, B ...
- notes for python简明学习教程(2)
方法是只能被该类调用的函数 print函数通常以换行作为输出结尾 字典的items方法 返回的是元组列表 即列表中的每个元素都是元组 切片左闭右开 即开始位置包含在切片中 结束位置不在 每一个对象都能 ...
- notes for python简明学习教程(1)
print总是以(\n)作为结尾,不换行可以指定一个空 end='' 字符串前面+r, 原始字符串 \ 显示行连接 input()函数以字符串的形式 返回键入的内容 函数参数, 有默认值的形参要放在形 ...
- 70个注意的Python小Notes
Python读书笔记:70个注意的小Notes 作者:白宁超 2018年7月9日10:58:18 摘要:在阅读python相关书籍中,对其进行简单的笔记纪要.旨在注意一些细节问题,在今后项目中灵活运用 ...
- [Python] 学习资料汇总
Python是一种面向对象的解释性的计算机程序设计语言,也是一种功能强大且完善的通用型语言,已经有十多年的发展历史,成熟且稳定.Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用 ...
- python——有一种线程池叫做自己写的线程池
这周的作业是写一个线程池,python的线程一直被称为鸡肋,所以它也没有亲生的线程池,但是竟然被我发现了野生的线程池,简直不能更幸运~~~于是,我开始啃源码,实在是虐心,在啃源码的过程中,我简略的了解 ...
- Python学习资料下载地址(转)
[转]Python学习资料和教程pdf 开发工具: Python语言集成开发环境 Wingware WingIDE Professional v3.2.12 Python语言集成开发环境 Wingwa ...
- 史上最全的Python电子书教程资源下载(转)
网上搜集的,点击即可下载,希望提供给有需要的人^_^ O'Reilly.Python.And.XML.pdf 2.02 MB OReilly - Programming Python 2nd. ...
- [转]Python学习资料和教程pdf
开发工具: Python语言集成开发环境 Wingware WingIDE Professional v3.2.12 Python语言集成开发环境 Wingware WingIDE Professio ...
随机推荐
- 解决多线程安全问题-无非两个方法synchronized和lock 具体原理(百度-美团)
还有其他的锁,如果想要了解,参考:JAVA锁机制-可重入锁,可中断锁,公平锁,读写锁,自旋锁, 用synchronized实现ReentrantLock 美团面试题参考:使用synchronized ...
- Sumdiv POJ 1845
http://poj.org/problem?id=1845 题目 Time Limit: 1000MS Memory Limit: 30000K Description Consider two ...
- TortoiseGit安装、配置
1 TortoiseGit简介 tortoiseGit是一个开放的git版本控制系统的源客户端,支持Winxp/vista/win7.该软件功能和git一样 不同的是:git是命令行操作模式,tort ...
- UOJ10 UTR #1 pyx的难题(堆)
显然优先级越高完成的越早,二分答案后用堆模拟就是O(nlog2n)的.考虑去一个log.先固定特殊题的优先级为最低,模拟一遍.这样在特殊题被扔过来到T的这段时间内,如果将特殊题的优先级提高至超过这其中 ...
- edusoho -A5: AppBundle UML
edusoho -A5: AppBundle UML
- [CTSC2008]网络管理 [整体二分]
题面 bzoj luogu 所有事件按时间排序 按值划分下放 把每一个修改 改成一个删除一个插入 对于一个查询 直接查这个段区间有多少合法点 如果查询值大于等于目标值 进入左区间 如果一个查询无解 那 ...
- 05VueCli
详情请见: https://pizzali.github.io/2018/10/30/VueCli/ Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统,Vue CLI 致力于将 Vue ...
- expansion pattern ‘Frame&’ contains no argument packs
camera/CameraImpl.h::: error: expansion pattern ‘Frame&’ contains no argument packs void read_fr ...
- Hadoop记录- Yarn Job MAX
#!/bin/sh #yarn job status:NEW.NEW_SAVING.SUBMITTED.ACCEPTED.RUNNING.FINISHED.FAILED.KILLED nnum=$(/ ...
- NOI-OJ 2.2 ID:6261 汉诺塔
思路 汉诺塔是递归思想最经典的例子,通过递归不断缩小问题,将n个盘子的问题简化n-1个,直至1个. 三个盘子,分别为A:from,B:to,C:by(A为起点盘,B为目标盘,C为中转盘) 过程 将1- ...