nnet3bin/nnet3-xvector-compute.cc
将特征在xvector神经网络模型中前向传播,并写出输出向量。我们将说话人识别的特定神经网络结构的输出向量或embedding称之为"Xvector"。该网络结构包括:帧级别的多个前馈层、帧级别之上的聚合层、统计池化层以及段级别的附加层。通常在统计池化层之后的输出层提取xvector。默认情况下,每个语句生成一个xvector。根据需要,可以chunk中提取多个xvector并求平均,以生成单个矢量。
Usage: nnet3-xvector-compute [options] <raw-nnet-in> <features-rspecifier> <vector-wspecifier>
e.g.: nnet3-xvector-compute final.raw scp:feats.scp ark:nnet_prediction.ark
对一个语音特征chunk,生成一个xvector
|
static void RunNnetComputation(const MatrixBase<BaseFloat> &features, const Nnet &nnet, CachingOptimizingCompiler *compiler, Vector<BaseFloat> *xvector) { ComputationRequest request; request.need_model_derivative = false; request.store_component_stats = false; request.inputs.push_back( IoSpecification("input", 0, features.NumRows())); IoSpecification output_spec; output_spec.name = "output"; output_spec.has_deriv = false; 将output-node所请求的输出Cindex索引数限制为1,这样,一个chunk(segment)只输出一个结果,即xvector output_spec.indexes.resize(1); request.outputs.resize(1); request.outputs[0].Swap(&output_spec); std::shared_ptr<const NnetComputation> computation(std::move(compiler->Compile(request))); Nnet *nnet_to_update = NULL; // we're not doing any update. NnetComputer computer(NnetComputeOptions(), *computation, nnet, nnet_to_update); CuMatrix<BaseFloat> input_feats_cu(features); computer.AcceptInput("input", &input_feats_cu); computer.Run(); CuMatrix<BaseFloat> cu_output; //输出的cu_output为行数为1的矩阵 computer.GetOutputDestructive("output", &cu_output); xvector->Resize(cu_output.NumCols()); //取输出矩阵的第一行向量作为xvector xvector->CopyFromVec(cu_output.Row(0)); } |
|
ParseOptions po(usage); Timer timer; NnetSimpleComputationOptions opts; CachingOptimizingCompilerOptions compiler_config; opts.acoustic_scale = 1.0; // by default do no scaling in this recipe. std::string use_gpu = "no"; int32 chunk_size = -1, min_chunk_size = 100; //若帧组不足一个chunk,则对input进行左右padding。 bool pad_input = true; opts.Register(&po); compiler_config.Register(&po); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Register("chunk-size", &chunk_size, "If set, extracts xectors from specified chunk-size, and averages. " "If not set, extracts an xvector from all available features."); po.Register("min-chunk-size", &min_chunk_size, "Minimum chunk-size allowed when extracting xvectors."); po.Register("pad-input", &pad_input, "If true, duplicate the first and " "last frames of the input features as required to equal min-chunk-size."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string nnet_rxfilename = po.GetArg(1), feature_rspecifier = po.GetArg(2), vector_wspecifier = po.GetArg(3); Nnet nnet; ReadKaldiObject(nnet_rxfilename, &nnet); SetBatchnormTestMode(true, &nnet); SetDropoutTestMode(true, &nnet); CollapseModel(CollapseModelConfig(), &nnet); CachingOptimizingCompiler compiler(nnet, opts.optimize_config, compiler_config); BaseFloatVectorWriter vector_writer(vector_wspecifier); int32 num_success = 0, num_fail = 0; int64 frame_count = 0; int32 xvector_dim = nnet.OutputDim("output"); SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); for (; !feature_reader.Done(); feature_reader.Next()) { std::string utt = feature_reader.Key(); const Matrix<BaseFloat> &features (feature_reader.Value()); if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_fail++; continue; } int32 num_rows = features.NumRows(), feat_dim = features.NumCols(), this_chunk_size = chunk_size; if (!pad_input && num_rows < min_chunk_size) { KALDI_WARN << "Minimum chunk size of " << min_chunk_size << " is greater than the number of rows " << "in utterance: " << utt; num_fail++; continue; } else if (num_rows < chunk_size) { KALDI_LOG << "Chunk size of " << chunk_size << " is greater than " << "the number of rows in utterance: " << utt << ", using chunk size of " << num_rows; this_chunk_size = num_rows; } else if (chunk_size == -1) { this_chunk_size = num_rows; } //num_chunks=1 int32 num_chunks = ceil( num_rows / static_cast<BaseFloat>(this_chunk_size)); Vector<BaseFloat> xvector_avg(xvector_dim, kSetZero); BaseFloat tot_weight = 0.0; // Iterate over the feature chunks. for (int32 chunk_indx = 0; chunk_indx < num_chunks; chunk_indx++) { //若接近输入的末尾,需要考虑剩余的帧是否足以凑足一个chunk。 int32 offset = std::min( this_chunk_size, num_rows - chunk_indx * this_chunk_size); if (!pad_input && offset < min_chunk_size) continue; SubMatrix<BaseFloat> sub_features( features, chunk_indx * this_chunk_size, offset, 0, feat_dim); Vector<BaseFloat> xvector; tot_weight += offset; // Pad input if the offset is less than the minimum chunk size if (pad_input && offset < min_chunk_size) { Matrix<BaseFloat> padded_features(min_chunk_size, feat_dim); int32 left_context = (min_chunk_size - offset) / 2; int32 right_context = min_chunk_size - offset - left_context; for (int32 i = 0; i < left_context; i++) { padded_features.Row(i).CopyFromVec(sub_features.Row(0)); } for (int32 i = 0; i < right_context; i++) { padded_features.Row(min_chunk_size - i - 1).CopyFromVec(sub_features.Row(offset - 1)); } padded_features.Range(left_context, offset, 0, feat_dim).CopyFromMat(sub_features); //一个chunk生成一个xvector RunNnetComputation(padded_features, nnet, &compiler, &xvector); } else { RunNnetComputation(sub_features, nnet, &compiler, &xvector); } //将所有chunk的xvectors进行累加 xvector_avg.AddVec(offset, xvector); } //求所有chunk的平均xvector xvector_avg.Scale(1.0 / tot_weight); vector_writer.Write(utt, xvector_avg); frame_count += features.NumRows(); num_success++; }
|
nnet3bin/nnet3-xvector-compute.cc的更多相关文章
- openStack kilo 手动Manual部署随笔记录
一 ,基于neutron网络资源主机(控制节点,网络节点,计算节点)网络规划配置 1, controller.cc 节点 网络配置截图
- World Finals 2017
Need for Speed Sheila is a student and she drives a typical student car: it is old, slow, rusty, a ...
- 图像匹配 | NCC 归一化互相关损失 | 代码 + 讲解
文章转载自:微信公众号「机器学习炼丹术」 作者:炼丹兄(已授权) 作者联系方式:微信cyx645016617(欢迎交流共同进步) 本次的内容主要讲解NCCNormalized cross-correl ...
- Xvector in Kaldi nnet3
Xvector nnet Training of Xvector nnet Xvector nnet in Kaldi Statistics Extraction Layer in Kaldi ...
- [CC]区域生长算法——点云分割
基于CC写的插件,利用PCL中算法实现: void qLxPluginPCL::doRegionGrowing() { assert(m_app); if (!m_app) return; const ...
- [CC]点云密度计算
包括两种计算方法:精确计算和近似计算(思考:local density=单位面积的点数 vs local density =1/单个点所占的面积) 每种方法可以实现三种模式的点云密度计算,CC里面的 ...
- Atitti.dw cc 2015 绿色版本安装总结
Atitti.dw cc 2015 绿色版本安装总结 1.1. 安装程序无法初始化.请下载adobe Support Advisor检测该问题.1 1.1.1. Adobe Application M ...
- C#中DataTable中的Compute方法使用收集
原文: C#中DataTable中的Compute方法使用收集 Compute函数的参数就两个:Expression,和Filter. Expresstion是计算表达式,关于Expression的详 ...
- 【Hello CC.NET】CC.NET 实现自动化集成
一.背景 公司的某一金融项目包含 12 个子系统,新需求一般按分支来开发,测完后合并到主干发布.开发团队需要同时维护开发环境.测试环境.模拟环境(主干).目前面临最大的两个问题: 1.子系统太多,每次 ...
随机推荐
- Docker 安装 MySQL
1. docker search mysql 2.docker pull mysql/mysql-serer 3.mkdir -p ~/mysql/data ~/mysql/logs ~/mysql/ ...
- AI adanet
adanet是一个基于Tensorflow的轻量级框架,只需要很少的专业干预,就可以自动学习出高质量的模型.在最近的AutoML成果上构建,既快速又灵活,还可以保证学习质量. adanet提供通用框架 ...
- Grunt自动化构建环境搭建
1.环境准备 需要安装Git.Node.Bower.Grunt.Ruby NodeJS https://nodejs.org/en/ Ruby http://rubyinstaller.org/ ...
- java遍历复杂json字符串获取想要的数据
https://blog.csdn.net/qq_34309663/article/details/80508125 java如何解析复杂的json数据关于json处理的包有好几个,比如jackson ...
- JS 字符串处理相关(持续更新)
一.JS判断字符串中是否包含某个字符串 indexOf() indexOf()方法可返回某个指定的字符串值在字符串中首次出现的位置.如果要检索的字符串值没有出现,则该方法返回 -1. var str ...
- 《Effective C++》实现:条款26-条款31
条款26:尽可能延后变量定义式的出现时间 C++推荐在使用对象前才定义对象(调用构造函数赋初值) 只在循环中使用的变量定义在循环内部(除非"赋值"成本低于"构造+析构&q ...
- Linux operating system basic knowleadge
1.Linux目录系统结构 It makes sense to explore the Linux filesystem from a terminal window. In fact, that ...
- Java多线程-线程池ThreadPoolExecutor构造方法和规则
为什么用线程池 原文地址 http://blog.csdn.net/qq_25806863/article/details/71126867 有时候,系统需要处理非常多的执行时间很短的请求,如果每一个 ...
- 常用的flex布局
演示地址:https://xibushijie.github.io/static/flex.html
- python之内置函数(一)
一.内置函数一1.内置函数总览 abs() dict() help() min() setattr()all() dir() hex() next() slice() any() divmod() i ...