这应该是入坑莫比乌斯反演的第一道题了吧

其实题目让我们求的东西很简单,就是

\[ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ]
\]

然后,显然,我们可以再化简一下,其实刚刚的式子就等价于

\[ans=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\left [ gcd(i,j)=1 \right ]
\]

但是,显然这个东西是十分不好算的

因为这是一道莫比乌斯反演的经典题,所以我们可以套一套

不妨设

\[f(x)=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\left [ gcd(i,j)=x \right ]
\]

那么,显然ans=f(1)

又可以设

\[g(x)=\sum_{i=1}^{a/k}\sum_{j=1}^{b/k}\left [ x|gcd(i,j) \right ]
\]

这东西显然就等于

\[\left \lfloor \frac{a}{kx} \right \rfloor*\left \lfloor \frac{b}{kx} \right \rfloor
\]

由两个函数的定义便可以证得

\[g(x)=\sum_{x|k,x<=n}^{}f(x)
\]

然后就是熟悉的味道了

具体见代码

#include<cstdio>
#include<iostream>
using namespace std;
long long maxn=1e5+10;
long long miu[100010],vis[100010];
void mobius()
{
for(int i=1;i<=maxn;++i)
miu[i]=1;
for(int i=2;i<=maxn;++i)
{
if(!vis[i])
{
miu[i]=-1;
for(int j=i+i;j<=maxn;j+=i)
{
vis[j]=1;
if((j/i)%i==0) miu[j]=0;
else miu[j]*=-1;
}
}
}
for(int i=1;i<=maxn;++i)
miu[i]+=miu[i-1];
}
int main()
{
mobius();
int T;
int a,b,k; scanf("%lld",&T);
for(long long _=1;_<=T;++_)
{
long long ans=0;
scanf("%d%d%d",&a,&b,&k);
int tmp=min(a,b);
int r;
for(int l=1;l<=tmp;l=r+1)
{ r=min(a/(a/l),b/(b/l));
ans=ans+(miu[r]-miu[l-1])*(a/(l*k))*(b/(l*k));
}
printf("%lld\n",ans);
} return 0;
}

洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】的更多相关文章

  1. BZOJ1101 & 洛谷3455:[POI2007]ZAP——题解

    https://www.luogu.org/problemnew/show/3455#sub http://www.lydsy.com/JudgeOnline/problem.php?id=1101 ...

  2. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  3. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  4. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  5. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  6. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  7. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  8. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  9. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

随机推荐

  1. iOS----------YYModel

    weaterInfoModel *weather = [weaterInfoModel yy_modelWithDictionary:returnData[@"weatherinfo&quo ...

  2. 借助表达式树感受不一样的CRUD

    借助表达式树感受不一样的CRUD Intro 最近有个想法,想不写 sql 语句,做一个类似于 ORM 的东西,自己解析表达式树,生成要执行的 sql 语句,最后再执行 sql 语句,返回相应结果. ...

  3. 用SQL语句实现:当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列。

    数据库中有A B C三列,用SQL语句实现:当A列大于B列时选择A列否则选择B列,当B列大于C列时选择B列否则选择C列. 方法一: select (case when a>b then a el ...

  4. Github如何提交修改的代码以及更新到最新版本

    最近有人问我,Github上如何把修改fork到的代码提交到原版本上去,以及如何更新到最新的版本.只针对初学者,大神的话勿喷. 首先说第一个问题. 进入到你修改的某个repository里面(以本人的 ...

  5. 使用mybatis报错【Result Maps collection already contains value for ...BaseResultMap】的解决方法

    Result Maps collection already contains value for ...BaseResultMap ...... 这个问题,相信大家在使用mybatis的重新生成 d ...

  6. Maven构建项目出现No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK?

    No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK? 你应该 ...

  7. Locust:简介和基本用法

    我个人在性能测试工作中,负载生成工具使用的大多都是jmeter,之前学习python时顺带了解过python开源的性能测试框架locust. 这篇博客,简单介绍下locust的使用方法,仅供参考... ...

  8. AttributeError: Got AttributeError when attempting to get a value for field `password2` on serializer ` UserSerializer`...

    Error_msg: AttributeError: Got AttributeError when attempting to get a value for field `password2` o ...

  9. linux测速工具 speedtest-cli

    安装speedtest-cli: wget -O speedtest-cli https://raw.githubusercontent.com/sivel/speedtest-cli/master/ ...

  10. 跳出语句break 和continue

    关键字break 常见的两种用法 在switch语句当中,一旦执行,整个switch语句立刻结束 在循环语句当中,一旦执行,整个循环语句立刻结束.跳出循环 代码举例: public class Dem ...