Dijkstra算法——计算一个点到其他所有点的最短路径的算法
迪杰斯特拉算法百度百科定义:传送门
gh大佬博客:传送门
迪杰斯特拉算法用来计算一个点到其他所有点的最短路径,是一种时间复杂度相对比较优秀的算法 O(n2)(相对于Floyd算法来说)
是一种单源最短路径算法,但是它并不能处理负边权的情况
Dijkstra的算法思想:①将一开始所有的非源点到源的距离设置成无限大(你认为的无限大实际上是0x3f(int)或者0x7fffffff(long long)
),然后源到源距离设置成0(不就是0吗),然后每次找到一个距离源最短的点u,将其变成白点,枚举所有的蓝点,如果源到白点存在中转站——一个蓝点使得源->蓝点和蓝点->白点的距离和更短,就更新。②每找到一个白点,就尝试更新其他蓝点,直到更新完毕。
代码及注释:
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<time.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}//快读
//head const int maxn=;
int g[maxn][maxn];//g数组用来存储图;
int n,m,s;//分别表示点的个数、有向边的个数、出发点的编号;
bool vis[maxn];//表示是否已经到达过;
int d[maxn];//d[i]表示从询问点到点i的最短路径;
const int inf=; int main ()
{
n=read(),m=read(),s=read();
rep(i,,n)
{
d[i]=inf; rep(j,,n)
g[i][j]=inf; g[i][i]=;//自己到自己的最短路径当然是0
}//初始化数组; rep(i,,m)
{
int u=read(),v=read(),w=read();
//u,v,i分别表示第i条有向边的出发点、目标点和长度;
g[u][v]=w;//读入;
} vis[s]=;//将起点标记成已经到达; rep(i,,n)
d[i]=g[s][i];//将最短路径初始化;
//如果两点之间有路线就初始化为该距离,如果没有就还是inf; while()
{
int stt_node=,stt_dis=inf;//stt=shortest 初始化两个变量
// stt_node表示最短路径的终点,stt_dis表示最短路径的长度 rep(i,,n)
{
if(vis[i]==&&d[i]<stt_dis)
//如果该点还没有到达,并且他的距离小于最短距离
{
stt_node=i,stt_dis=d[i];//更新变量
}
} if(stt_node==) break;
//如果已经没有可以更新的最短路径了,就说明已经结束了 vis[stt_node]=;//将该点标记成已经到达 rep(i,,n)
{
if(vis[i]||g[stt_node][i]==inf)continue;
//如果并没有到达或者是两点之间没有路径,就进入下一层循环 d[i]=min(d[i],stt_dis+g[stt_node][i]);//更新最短路径
}
} rep(i,,n)
printf("%d ",d[i]);
return ;
}
我们考虑一下对它的优化。因为如果我们每一次都要扫一遍判断出边,我们还不如直接存出边:
邻接表!(链式前向星)
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<time.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}//快读
//head const ll INF = ;
struct edge
{
ll to, dis_, next;
} Edge[];
struct node
{
ll to, dis;
inline friend bool operator<(const node &a, const node &b)
{
return a.dis < b.dis;
}
};
ll head[], dis[];
bool vst[];
ll nodenum, edgenum, origin_node, cnt = , t;
priority_queue<node> q; inline void add_edge(ll from, ll to, ll value)
{
Edge[cnt].to = to;
Edge[cnt].dis_ = value;
Edge[cnt].next = head[from];
head[from] = cnt++;
} inline void dijkstra()
{
for (register int i = ; i < origin_node; i++)
{
dis[i] = INF;
}
//dis[origin_node]=0;
for (register int i = origin_node + ; i <= nodenum; i++)
{
dis[i] = INF;
}
q.push((node){origin_node, });
while (!q.empty())
{
int x = q.top().to;
q.pop();
if (vst[x])
continue;
vst[x] = ;
for (register int i = head[x]; i; i = Edge[i].next)
{
dis[Edge[i].to] = min(dis[Edge[i].to], dis[x] + Edge[i].dis_);
q.push((node){Edge[i].to, dis[Edge[i].to]});
}
}
} int main()
{
nodenum = read(), edgenum = read(), origin_node = read() ;//t=read();
for (register int i = ; i <= edgenum; i++)
{
register int f, t, v;
f = read(), t = read(), v = read();
add_edge(f, t, v);
}
dijkstra();
rep(i,,nodenum)
{
printf("%lld ",dis[i]);
} return ;
}
Dijkstra算法——计算一个点到其他所有点的最短路径的算法的更多相关文章
- Bellman_Ford算法(求一个点到任意一点的最短距离)
单源最短路问题是固定一个起点,求它到任意一点最短路的问题. 记从起点出发到顶点 i 的最短距离为d[i],则有以下等式成立 d[i]=min{d[j]+(从j到 i 的边的权值) 看代码 #inclu ...
- 最短路径Floyd算法【图文详解】
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被 ...
- Dijkstra 算法——计算有权最短路径(边有权值)
[0]README 0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在理解 Dijkstra 的思想并用源代码加以实现: 0.2)最短路径算法的基础知识,参见 http://blog. ...
- 求最短路径(Bellman-Ford算法与Dijkstra算法)
前言 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的.这时候,就需要使用其他的算法来求 ...
- Canopy算法计算聚类的簇数
Kmeans算是是聚类中的经典算法.步骤例如以下: 选择K个点作为初始质心 repeat 将每一个点指派到近期的质心,形成K个簇 又一次计算每一个簇的质心 until 簇不发生变化或达到最大迭代次数 ...
- 关于apriori算法的一个简单的例子
apriori算法是关联规则挖掘中很基础也很经典的一个算法,我认为很多教程出现大堆的公式不是很适合一个初学者理解.因此,本文列举一个简单的例子来演示下apriori算法的整个步骤. 下面这个表格是代表 ...
- Floyd-Warshall算法计算有向图的传递闭包
Floyd-Warshall算法是用来求解所有结点对最短路径的知名算法,其还有一个重要的用途就是求解有向图的传递闭包,下面就让我来介绍算法导论中关于有向图闭包计算的有关记载吧. 有向图的传递闭包:我们 ...
- 通过python的hashlib模块计算一个文件的MD5值
Python的hashlib提供了很多摘要算法,如MD5,SHA1等常用算法. 什么是摘要算法呢?摘要算法又称哈希算法.散列算法.它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(如MD5值 ...
- ZT 计算一个无符整数中1Bit的个数(1) 2010-04-20 10:52:48
计算一个无符整数中1Bit的个数(1) 2010-04-20 10:52:48 分类: C/C++ [转]计算一个无符整数中1Bit的个数(1) Count the number of bits ...
随机推荐
- Vue移动端项目模板
一个集成移动端开发插件的Vue移动端模板包含1.css: 使用stylus开发css 集成reset样式文件 修改UI组件文件 统一样式处理(如主题色等)2.UI组件 使用热门的vant与mint-u ...
- 2018 AI产业界大盘点
2018 AI产业界大盘点 大事件盘点 “ 1.24——Facebook人工智能部门负责人Yann LeCun宣布卸任 Facebook人工智能研究部门(FAIR)的负责人Yann LeCun宣布卸 ...
- Java实践:一个简易的http server和client的java源码学习和总结。
一.基本思路: 1.服务器端通过socket(), 监听在TCP 8080端口,等待客户端来连接. 2.服务器端解析客户端的HTTP请求中的URI值,把本地的目录下指定文件通过java的读取文件的方式 ...
- OpenCL:图像处理基础note
使用图像对象的理由 虽然对于图像也可以把它的像素数据当做一般的缓存数据来处理,但是如果把它当做图像来处理有如下好处: 在GPU中,图像数据是保存在特殊的全局内存中,即纹理内存,它和一般的全局内存不相同 ...
- 搭建Jetbrains家族IDE授权服务器
虽然VS号称宇宙第一IDE但是也有不方便的地方,如果你也是C#码农我不得不向你推荐一个强大的插件ReSharper,他会是你的开发更加便捷,大大加快了开发的速度以及开发的乐趣.但是ReSharper并 ...
- windows 为qt5.7.1 安装openssl
本人使用qt5.7.1+msvc2015写一个https的客户端程序,但是用到解析https协议时,报出如下错误 qt.network.ssl: QSslSocket: cannot call unr ...
- SQLServer删除数据列
删除数据列 开发或者生产过程中多建.错误或者重复的数据列需要进行删除操作. 使用SSMS数据库管理工具删除数据列 方式一 1.打开数据库->选择数据表->展开数据表->展开数据列-& ...
- Spring boot admin 节点状态一直为DOWN的排查
项目中需要监控各个微服务节点的健康状态,找到了spring boot admin这个全家桶监控工具,它其实是Vue.js美化过的Spring Boot Actuator,官方的解释是: codecen ...
- log4j控制指定包下的日志
最近观察日志发现如下两个问题: 1.项目用的是springboot项目,整合了rabbitmq,项目启动后,会自动监控rabbitmq谅解是否正常,导致控制台一直输出监控日志,此时就想阻止该类日志输出 ...
- 【English Teradata】名称缩写
日常缩写 [GTM]Teradata Go-to-Market employees [GTS]Teradata Global Technical Support [GSC] [CS&S]Cus ...