题目大意

  有 \(n\) 个机器人和 \(m\) 个出口。

  这 \(n\) 个机器人的初始位置是 \(a_1,a_2,\ldots,a_n\),这 \(m\) 个出口的位置是 \(b_1,b_2,\ldots,b_m\)。

  你每次可以让所有机器人往左走一步或往右走一步。

  当一个机器人所在的位置有一个出口时,这个机器人就会从这个出口出去。

  问你有多少种让机器人全部离开的方案。

  两种方案不同当且仅当有至少一个机器人从不同的出口出去。

  \(n,m\leq 100000\)

题解

  先把最左边的出口左边的机器人和最右边的出口右边的机器人还有已经在出口的机器人全部删掉。

  对于一个机器人,设它到左边出口的距离为 \(a_i\),到右边出口的距离为 \(b_i\)。可以把它看成一个点 \((a_i,b_i)\)。

  记 \(x\) 是所有机器人往左移动的最远点到初始位置的距离,\(y\) 是所有机器人往右移动的最远点到初始位置的距离。

  那么每次可以选择把 \((x,y)\) 变成 \((x+1,y)\) 或者 \((x,y+1)\)。

  当 \(x=a_i\) 时,第 \(i\) 个机器人会从左边的出口出去,当 \(y=b_i\) 时,机器人会从右边的出口出去。

  那么可以看成从原点开始走,每次往上或右走一步。最后走的这条折线的上方和下方分别对应着从左边和右边的出口出去的机器人的集合。

  那么考虑把折线往下移,变成这样:

  那么一条折线可以用折线经过的点(那些涂黑的格子)来表示。

  设 \(f_i\) 为最后一个经过的黑色格子是 \(i\) 的方案数。

  \(f_i=1+\sum_{x_j<x_i,y_j<y_i}f_j\)

  用树状数组维护。

  时间复杂度: \(O(n\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=1000000007;
const int N=100010;
int cmp(pii a,pii b)
{
if(a.first!=b.first)
return a.first<b.first;
return a.second>b.second;
}
int n,m,t,t2;
int a[N],b[N],d[N];
pii c[N];
ll e[N];
ll add(ll a,ll b)
{
a+=b;
return a>=p?a-p:a;
}
void add(int x,ll v)
{
for(;x<=t2;x+=x&-x)
e[x]=add(e[x],v);
}
ll sum(int x)
{
ll s=0;
for(;x;x-=x&-x)
s=add(s,e[x]);
return s;
}
int main()
{
open("arc101f");
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<=m;i++)
scanf("%d",&b[i]);
for(int i=1;i<=n;i++)
if(a[i]>b[1]&&a[i]<b[m])
{
int x=lower_bound(b+1,b+m+1,a[i])-b;
if(b[x]==a[i])
continue;
c[++t]=pii(a[i]-b[x-1],b[x]-a[i]);
d[++t2]=b[x]-a[i];
}
sort(d+1,d+t2+1);
t2=unique(d+1,d+t2+1)-d-1;
for(int i=1;i<=t;i++)
c[i].second=lower_bound(d+1,d+t2+1,c[i].second)-d;
sort(c+1,c+t+1,cmp);
t=unique(c+1,c+t+1)-c-1;
ll ans=1;
for(int i=1;i<=t;i++)
{
ll s=sum(c[i].second-1)+1;
ans+=s;
add(c[i].second,s);
}
ans%=p;
printf("%lld\n",ans);
return 0;
}

【ARC101F】Robots and Exits 树状数组的更多相关文章

  1. 【ARC101F】Robots and Exits 树状数组优化DP

    ARC101F Robots and Exits 树状数组 有 $ n $ 个机器人和 $ m $ 个出口.这 $ n $ 个机器人的初始位置是 $ a_1,a_2.....a_n $ ,这 $ m ...

  2. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  3. 洛谷P2982 [USACO10FEB]慢下来Slowing down [2017年四月计划 树状数组01]

    P2982 [USACO10FEB]慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) c ...

  4. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  5. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

  6. codeforces 597C C. Subsequences(dp+树状数组)

    题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...

  7. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  8. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  9. BZOJ 3289: Mato的文件管理[莫队算法 树状数组]

    3289: Mato的文件管理 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 2399  Solved: 988[Submit][Status][Di ...

随机推荐

  1. TS学习随笔(四)->数组的类型

    少侠们,今天我们继续来搞一搞TS 今天我们要来看一看TS中数组的定义是个什么鬼样子 数组的类型: 在 TypeScript 中,数组类型有多种定义方式,比较灵活.下面我们来看看有哪些定义方法 「类型 ...

  2. Mysql表分区的选择与实践小结

    在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快.这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈. 一. 选择合适的解决方法 1. 分库分表. 分库 ...

  3. python模块--zipfile文件压缩

    zipfile模块是python中一个处理压缩文件的模块,解决了不少我们平常需要处理压缩文件的需求 ,本文主要谈谈zipfile几个常用的用法. 首先我在Windows操作系统中创建如下的文件目录: ...

  4. JVM远程调试功能

    有时候想调试线上的程序 可以启用远程调试功能 在本地调试远程代码. 远程JVM启用调试模式 /usr/local/jdk/bin/java -server -Xms256m -Xmx256m -XX: ...

  5. 这么小的key-val数据库居然也支持事务——与短跑名将同名的数据库Bolt

    传送门: 柏链项目学院 什么是Bolt?   Bolt是一个纯净的基于go语言编写的key-val数据库,该项目受到LMDB项目的启发,目标是提供一个不需要完整服务器的简单.快速.可靠的数据库.    ...

  6. AngularJS学习之旅—AngularJS Http(九)

    1.AngularJS XMLHttpRequest $http 是 AngularJS 中的一个核心服务,用于读取远程服务器的数据. eg: // 简单的 GET 请求,可以改为 POST $htt ...

  7. JavaScript(二)数据类型(二)

    布尔值布尔值指真或假,开或关,是或否,关键字true和false.下面这些值会被转换成false: undefined null 0 -0 NaN ""    //  空字符串 布 ...

  8. Python运算符之翩若惊鸿,婉若游龙

    python中的运算符算术运算符:主要用于两个对象算数计算(加减乘除等运算)比较运算符:用于两个对象比较(判断是否相等.大于等运算)赋值运算符:用于对象的赋值,将运算符右边的值(或计算结果)赋给运算符 ...

  9. Linux systemtap定位系统IO资源使用情况(ok)

    一.systemtap介绍 SystemTap是一个强大的调试工具,是监控和跟踪运行中的Linux 内核的操作的动态方法,确切的说应该是一门调试语言,因为它有自己的语法,也有解析.编译.运行等过程(准 ...

  10. JAVA常用API的总结(2)

    这篇是常用API的结束了,写完的话可以继续往后复习了. 1.基本类型包装类的介绍与相关代码实现 对于数据包装类的特点就是可以将基本数据类型与字符串来回切换,接下来我会通过介绍Integer类的形式,来 ...