1545 找出第N个二进制字符串的第K位 #分治

题目链接

题意

给定正整数\(n(\leq 20)\)与\(k\),二进制串\(S_n\)形成规则有:

  • \(S_1 = “0”\)

  • 当\(i>1\)时,\(S_i = S_{i-1}+“1”+reverse(invert(S_{i-1}))\)

    其中\(reverse(x)\)表示左右反转字符串x,\(invert(x)\)表示翻转x中的每一位(0->1,1->0)

现要返回\(S_n\)的第\(k\)位字符

如:\(n=3,k=1\),可以得到\(S_3=“0111001”\),其第一位为"0",故返回"0"

分析

本来想打表,但最后的串实在是长。我们不必从n=1一步步模拟整个过程,而是自顶而下深入递归,只关心第\(k\)位属于上一步形成的01串的哪个位置哪个字符。

我们容易推出,对于\(S_n\)形成的串为\(2^n-1\)长度的01串,我们比较\(k\)与\(2^{n-1}\)的大小:

  • 如果\(k=2^{n-1}\),它在串最中间,字符为"1",直接返回即可
  • 如果\(k<2^{n-1}\),它在当前串的左部分,由串的形成规则可知,串左部分是经上一轮的串直接复制得到的,那么递归\(n-1\)次操作的第\(k\)位即可
  • 如果\(k>2^{n-1}\),由串的形成规则,串右部分是经过上一轮串的反转+翻转得到的,那么当前的第k位是由上一轮的\(2^n-1-k+1\)位置得到的,当然别忘了对返回结果的字符进行取反操作!
class Solution {
public:
char Trans(char now) {
return (now == '1') ? '0' : '1';
}
char findKthBit(int n, int k) {
if (n == 1) return '0';
int len = 1 << (n - 1);
if (k == len) return '1';
else if (k < len) return findKthBit(n - 1, k);
else {
return Trans(findKthBit(n - 1, (len << 1) - k));
}
}
};

1546 和为目标值的最大数目不重叠非空子数组数目 #前缀和 #哈希表 #线性DP

题目链接

题意

给定数组 nums(长度不大于\(1e5\)) 和一个整数 target 。现要返回 非空不重叠 子数组的最大数目,且每个子数组中数字和都为 target

样例

nums = [-1,3,5,1,4,2,-9], target = 6,总共有 3 个子数组和为 6 。 $([5,1], [4,2], [3,5,1,4,2,-9]) $但只有前 2 个是不重叠的。

分析

dp[i]表示前i位满足要求的数组个数;sum表示[1, size]的前缀和(先假定从1计数)

当\(i>0\)显然dp[0] = 0;当\(i>0\)时,有两种情况:

  • 存在这样的\(pos(\leq i) st.sum[i]-sum[pos]==target\),

    • 我们找到\([pos, i]\)的合法子数组,于是dp[i] 可以由dp[pos]+1转移
    • [pos, i]的子数组长度可能太长,以至于覆盖了该区间的几个合法子数组,那么dp[i]也可以由dp[i-1]转移

    即得到转移方程:\(dp[i] = max(dp[i-1], dp[pos]+1)\)

  • 不存在这样的\(pos\),显然转移方程只能为\(dp[i] = dp[i-1]\)

class Solution {
private:
int dp[100005] = {0};
public:
int maxNonOverlapping(vector<int>& nums, int target) {
map<int, int> mymap;
int sum = 0; mymap[0] = 0;
for (int i = 1; i <= nums.size(); i++) {
sum += nums[i - 1];
if (mymap.count(sum - target)) { //是否存在sum[pos]满足sum[i]-sum[pos]=target
int pos = mymap[sum - target];
dp[i] = max(dp[i - 1], dp[pos] + 1);
}
else {
dp[i] = dp[i - 1];
}
mymap[sum] = i; //记录前缀和sum的最新位置
}
return dp[nums.size()];
}
};

1547 切棍子的最小成本 #区间DP

题目链接

题意

给定长度为\(n\)个单位的木棍,及记录你要将棍子切开的位置数组\(cuts[i]\),现要你按\(cuts[i]\)记录的位置按一定顺序切割木棍,使得成本最小,并求其值。其中每次切割的成本是当前要切割的棍子的长度。

分析

显然是石子合并的变式,区间DP题,不过我们需要预处理下每个切割位置之间的长度(该位置的序号-前一位置的序号),同时将代价数组sum[]从1计数,便于DP

class Solution {
private:
int sum[105] = { 0 };
int dp[105][105];
public:
int cost(int lo, int hi) {
return sum[hi] - sum[lo];
}
void Init(int maxlen, vector<int>& cuts, int n) {
sort(cuts.begin(), cuts.end());
for (int i = 1; i <= maxlen; i++)
for (int j = 1; j <= maxlen; j++)
dp[i][j] = 0x3f3f3f3f;
sum[1] = cuts[0]; dp[1][1] = dp[maxlen][maxlen] = 0;
for (int i = 2; i <= cuts.size(); i++) {
dp[i][i] = 0;
sum[i] = sum[i - 1] + cuts[i - 1] - cuts[i - 2];
}
sum[maxlen] = sum[maxlen - 1] + n - cuts[cuts.size() - 1];
}
int minCost(int n, vector<int>& cuts) {
int maxlen = cuts.size() + 1;
Init(maxlen, cuts, n);
for (int len = 2; len <= maxlen; len++) {
for (int i = 1; i + len - 1 <= maxlen; i++) {
int j = i + len - 1;
for (int k = i; k < j; k++)
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + cost(i - 1, j));
}
}
return dp[1][maxlen];
}
};

Leetcode 周赛#201 题解的更多相关文章

  1. Leetcode 周赛#202 题解

    本周的周赛题目质量不是很高,因此只给出最后两题题解(懒). 1552 两球之间的磁力 #二分答案 题目链接 题意 有n个空篮子,第i个篮子位置为position[i],现希望将m个球放到这些空篮子,使 ...

  2. LeetCode周赛#204 题解

    1566. 重复至少 K 次且长度为 M 的模式 #模拟 题目链接 题意 给定正整数数组 arr,请你找出一个长度为 m 且在数组中至少重复 k 次的模式. 模式 是由一个或多个值组成的子数组(连续的 ...

  3. LeetCode周赛#203 题解

    1561. 你可以获得的最大硬币数目 #贪心 题目链接 题意 有 3n 堆数目不一的硬币,你和你的朋友们打算按以下方式分硬币: 每一轮中,你将会选出 任意 3 堆硬币(不一定连续). Alice 将会 ...

  4. Leetcode 周赛#200 题解

    1535 找出数组游戏的赢家 #模拟+优化 题目链接 题意 给你一个由 不同 整数组成的整数数组 arr 和一个整数 k(\(1\leq k\leq1e9\)) .每回合游戏都在数组的arr[0] 和 ...

  5. 【LeetCode】201. Bitwise AND of Numbers Range 解题报告(Python)

    [LeetCode]201. Bitwise AND of Numbers Range 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/prob ...

  6. LeetCode双周赛#33 题解

    5480. 可以到达所有点的最少点数目 #贪心 题目链接 题意 给定有向无环图,编号从0到n-1,一个边集数组edges(表示从某个顶点到另一顶点的有向边),现要找到最小的顶点集合,使得从这些点出发, ...

  7. Leetcode 双周赛#32 题解

    1540 K次操作转变字符串 #计数 题目链接 题意 给定两字符串\(s\)和\(t\),要求你在\(k\)次操作以内将字符串\(s\)转变为\(t\),其中第\(i\)次操作时,可选择如下操作: 选 ...

  8. 【Leetcode周赛】从contest-111开始。(一般是10个contest写一篇文章)

    Contest 111 (题号941-944)(2019年1月19日,补充题解,主要是943题) 链接:https://leetcode.com/contest/weekly-contest-111 ...

  9. 【Leetcode周赛】从contest-41开始。(一般是10个contest写一篇文章)

    Contest 41 ()(题号) Contest 42 ()(题号) Contest 43 ()(题号) Contest 44 (2018年12月6日,周四上午)(题号653—656) 链接:htt ...

随机推荐

  1. Redis学习笔记(五)——数据结构之哈希(Hash)

    一.介绍 Redis hash是一个string类型的field和value的映射表,hash特别设于用于存储对象. Redis中每个hash可以存储232 - 1 键值对(40多亿). 基本命令: ...

  2. D. Regular Bridge 解析(思維、圖論)

    Codeforce 550 D. Regular Bridge 解析(思維.圖論) 今天我們來看看CF550D 題目連結 題目 給你一個\(k\le100\),請構造出一個至少有一個Bridge的,每 ...

  3. 想用Nginx代理一切?行!

    Nginx能代理一切吗? 是的,Nginx可以作为一个优秀的http网关,但nginx能代理SSH2,MySQL,Oracle的连接吗?也算行吧,nginx有stream-module,专门处理TCP ...

  4. 【转】Setting up SDL Extension Libraries on Windows

    FROM: http://lazyfoo.net/tutorials/SDL/06_extension_libraries_and_loading_other_image_formats/window ...

  5. Python ( 高级 第二部)

    目录 模块和包 面向对象 部分一: 面向对象程序开发 面向对象封装: 对象的相关操作 面向对象封装: 类的相关操作 实例化的对象/ 定义的类删除公有成员属性和公有成员方法 部分二: 单继承 多继承 菱 ...

  6. 「newbee-mall新蜂商城开源啦」 页面优化,最新版 wangEditor 富文本编辑器整合案例

    大家比较关心的新蜂商城 Vue3 版本目前已经开发了大部分内容,相信很快就能够开源出来让大家尝鲜了,先让大家看看当前的开发进度: 开源仓库地址为 https://github.com/newbee-l ...

  7. 【Azure 环境】存储在Azure上的文件,使用IE/Edge时自动打开的问题,如何变为下载而非自动打开

    问题描述 存储,作为云服务最重要的一部分.当需要从云存储中下载文件时,时常面临一些格式的文件被浏览器自动打开而非下载,那如何来解决这个问题呢? 在Azure中,存储的服务有以下方式: Azure Bl ...

  8. Js中常见的内存泄漏场景

    常见的内存泄漏场景 内存泄漏Memory Leak是指程序中已动态分配的堆内存由于疏忽或错误等原因程序未释放或无法释放,造成系统内存的浪费,导致程序运行速度减慢甚至系统崩溃等严重后果.内存泄漏并非指内 ...

  9. POI做题记录

    嘿嘿,偷学一波! 由于博主做的题比较少,所以没按年份整理,直接按照做题时间放上来了. 2020年9月20日 [POI2013]LUK-Triumphal arch 给你一颗\(n\)个点的树(\(n\ ...

  10. ZJU-Summer Camp Problem

    Day 1 NTT #include <bits/stdc++.h> #define inf 0x3f3f3f3f #define m_k make_pair #define mod 99 ...