前言:对于我这种追求极致的人来说,效率很重要。

前面看到网上关于python循环的测评,到自己在项目中的应用,发现,并不是这么回事。所以,写下次博文,一次性了解这个问题。

语言版本:python3.6

平台:mac10.12.6

IDE:pycharm community 2018.2

关于循环的介绍:

1. for循环

  我们最开始使用的循环。for循环的对象是可迭代对象。这里不详述。

2. 列表解析式

  与之类似,字典解析式,集合解析式等。

3. map循环

  与之类似有reduce,filter。这里不详述。

最终测试结果:

 map比列表解析式快一点点,

 列表解析式,大概比普通for循环快1.5倍。

 符合预期。(擦了一把汗!)

ps:有同学测试,说map速度远远大与列表推导式(大概快10000倍),这是因为他返回的是生成器对象,并没有计算出结果,所以这个不算。

以上测试,只是反映实际情况一种。并不能说这个是公理。仅仅给大家提供参考。博主不才。

测试开始:

import time
i = list(range(1000000)) # 生成测试序列

首先测试将数字转换成字符串:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
lt_1.append(str(each))
t2 = time.time()
print(t2 - t)
lt_2 = [lambda x: str(x) for x in i]
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: str(x), i))
t4 = time.time()
print(t4 - t3)

  结果:

0.5911688804626465
1.0817310810089111
0.7083189487457275

0.4922349452972412
1.0927751064300537
0.4922208786010742

0.5165529251098633
1.100153923034668
0.5037112236022949

结果很意外,对吧,直接采用for循环,效率比列表解析式高一倍。和网络上的教程有出入。

说明:python3 map返回的是生成器(python2 map返回列表),需要使用list来驱动他得出结果。

接下来测试计算:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
each += 1
lt_1.append(each)
t2 = time.time()
print(t2 - t)
lt_2 = [lambda x: x+1 for x in i]
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: x+1, i))
t4 = time.time()
print(t4 - t3)

结果:

0.349423885345459
1.0195939540863037
0.21120715141296387

0.4159379005432129
1.1701478958129883
0.21973800659179688

0.32332897186279297
1.2796630859375
0.36236000061035156

这里能看到,map显著比for循环高,for循环比列表解析式快,这个貌似还是有些出入。

ps:对每次结果不同的解释:由于系统本身还在运行其他程序。所以,在调用python时,不可避免需要等待其他程序结束。所以会出现第三次结果的情况。

我测试了很多遍,基本结论是,map比for循环大概快1.5倍。

但是,当我把结果打印出来时,发现,列表解析式内使用lamba,返回的是<function <listcomp>.<lambda> at 0x10e154510>,不会直接返回值:所以,更新下测试代码。

# -------------------------------
i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
each += 1
lt_1.append(each)
t2 = time.time()
print(t2 - t)
def ggwp(x):
return x+1
lt_2 = [ggwp(x) for x in i]
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: x+1, i))
t4 = time.time()
print(t4 - t3)

结果:

0.32393980026245117
0.2332770824432373
0.2076709270477295

0.3169240951538086
0.23195600509643555
0.20856499671936035

0.2955038547515869
0.23477792739868164
0.20820212364196777

所以,最终结果是:map速度最快,其次是列表解析式,最后是for循环。

同样更新第一个实验的测试代码:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
lt_1.append(str(each))
t2 = time.time()
# print(lt_1)
print(t2 - t)
def ggwp(x):
return str(x)
lt_2 = [ggwp for x in i]
t3 = time.time()
# print(lt_2)
print(t3 - t2)
lt_3 = list(map(lambda x: str(x), i))
t4 = time.time()
# print(lt_3)
print(t4 - t3)

0.5370810031890869
0.08401012420654297
0.5191819667816162

发现,这个列表解析式,效率明显高于其他2个。于是,再次修改代码。

import time
# -------------------------------
i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
lt_1.append(str(each))
t2 = time.time()
# print(lt_1)
print(t2 - t)
def ggwp(x):
return str(x)
lt_2 = [ggwp for x in i]
t3 = time.time()
# print(lt_2)
print(t3 - t2)
# lt_3 = list(map(lambda x: str(x), i))
lt_3 = list(map(ggwp, i))
t4 = time.time()
# print(lt_3)
print(t4 - t3)

0.480226993560791
0.06554508209228516
0.5108628273010254

是不是很神奇?WHY?为什么列表解析式的效率一下子提高这么多?

找到原因,因为红色的ggwp,只写了函数名。和之前的lambda类似,<function ggwp at 0x10e255488>。这个不符合要求。

修正后:

lt_2 = [ggwp(x) for x in i]

0.4904050827026367
0.5147149562835693
0.49653005599975586

0.5053339004516602
0.502392053604126
0.49272894859313965

0.49378418922424316
0.4825170040130615
0.5087540149688721

发现,速度差不多。基本相同。

再来测试乘法运算:

i = list(range(1000000))
t = time.time()
lt_1 = []
for each in i:
each = each*each
lt_1.append(each)
# print(lt_1)
t2 = time.time()
print(t2 - t)
def ggwp(x):
return x*x
lt_2 = [ggwp(x) for x in i]
# print(lt_2)
t3 = time.time()
print(t3 - t2)
lt_3 = list(map(lambda x: x*x, i))
# print(lt_3)
t4 = time.time()
print(t4 - t3)

0.5563499927520752
0.3827509880065918
0.3217048645019531

0.3309590816497803
0.21875500679016113
0.2042989730834961

0.3309590816497803
0.21875500679016113
0.2042989730834961

结果:map总体比列表解析式快一点。列表解析式大概比for循环快1.5倍。

----------------------------------------------------------------

python 几个循环的效率测试的更多相关文章

  1. Python执行效率测试模块timei的使用方法与与常用Python用法的效率比较

    timeit模块用于测试一段代码的执行效率 1.Timer类 Timer 类: __init__(stmt="pass", setup="pass", time ...

  2. python基础之循环结构以及列表

    python基础之编译器选择,循环结构,列表 本节内容 python IDE的选择 字符串的格式化输出 数据类型 循环结构 列表 简单购物车的编写 1.python IDE的选择 IDE的全称叫做集成 ...

  3. 第五篇:python基础之循环结构以及列表

    python基础之循环结构以及列表   python基础之编译器选择,循环结构,列表 本节内容 python IDE的选择 字符串的格式化输出 数据类型 循环结构 列表 简单购物车的编写 1.pyth ...

  4. Python_线程、线程效率测试、数据隔离测试、主线程和子线程

    0.进程中的概念 三状态:就绪.运行.阻塞 就绪(Ready):当进程已分配到除CPU以外的所有必要资源,只要获得处理机便可立即执行,这时的进程状态成为就绪状态. 执行/运行(Running)状态:当 ...

  5. 进程池原理及效率测试Pool

    为什么会有进程池的概念? 当我们开启50个进程让他们都将100这个数减1次减到50,你会发现特别慢! 效率问题,原因: 1,开辟内存空间.因为每开启一个进程,都会开启一个属于这个进程池的内存空间,因为 ...

  6. 关于for,while,dowhile效率测试

    引言 大家都知道每种循环对应的效率是不同的,书中都说在循环中使用减法的效率是比加法的效率高的,具体情况是怎么样,我们将详细列出各循环的执行效率问题.本文通过查看汇编代码比较各循环的效率以及i++,++ ...

  7. Python--day39--进程池原理及效率测试

    #为什么要有进程池的概念 #效率 #每次开启进程都要创建一个属于这个进程的内存空间 #寄存器 堆栈 文件 #进程过多 操作系统调度进程 # #进程池 #python中的 先创建一个属于进程的池子 #这 ...

  8. Python列表倒序输出及其效率

    Python列表倒序输出及其效率 方法一 使用Python内置函数reversed() for i in reversed(arr): pass reversed返回的是迭代器,所以不用担心内存问题. ...

  9. NHibernate Demo 和 效率测试

    本文关于NHibernate的Demo和效率测试,希望对大家有用. 1.先去官网下载Nhibernate 2.放入到项目中并建立Helper类 private static ISession _Ses ...

随机推荐

  1. ElasticSearch详细笔记

    ElasticSearch详细笔记 什么是ElasticSearch Elasticsearch(简称ES)是一个基于Apache Lucene(TM)的开源搜索引擎,无论在开源还是专有领域,Luce ...

  2. E. Tree Queries 解析(思維、LCA)

    Codeforce 1328 E. Tree Queries 解析(思維.LCA) 今天我們來看看CF1328E 題目連結 題目 給你一棵樹,並且給你\(m\le2e5\)個詢問(包含\(k\)個點) ...

  3. SQL Server 列存储索引 第三篇:维护

    列存储索引分为两种类型:聚集的列存储索引和非聚集的列存储索引,在一个表上只能创建一个聚集索引,要么是聚集的列存储索引,要么是聚集的行存储索引,然而一个表上可以创建多个非聚集索引. 一,创建列存储索引 ...

  4. vue-cli @4安装

    10月16日,官方发布消息称Vue-cli 4.0正式版发布,安装和vue-cli3.0的是一模一样的,与3.0的脚手架,除了目录发生变化一些,其他的都一样,由于近期才推出,企业中还在使用3.0,但是 ...

  5. dcoker 搭建单节点redis

    1.安装docker 1.检查内核版本,必须是3.10及以上 [root@localhost ~]# uname -r 2.安装docker [root@localhost ~]# yum insta ...

  6. 关于windows下redis的安装

    1.下载地址:https://github.com/MSOpenTech/redis/releases 2.DOS下进redis文件夹目录,执行redis-server.exe redis.windo ...

  7. SAP S/4HANA 2020安装实录

    欢迎关注微信公众号:sap_gui (ERP咨询顾问之家) 今天开始试着安装SAP S/4HANA 2020版本,也是目前SAP ERP最高的版本,总安装文件大小大概50GB,数据库版本必须是HANA ...

  8. AQS源码深入分析之条件队列-你知道Java中的阻塞队列是如何实现的吗?

    本文基于JDK-8u261源码分析 1 简介 因为CLH队列中的线程,什么线程获取到锁,什么线程进入队列排队,什么线程释放锁,这些都是不受我们控制的.所以条件队列的出现为我们提供了主动式地.只有满足指 ...

  9. Hill密码解密过程(Java)

    Hill密码是一种传统的密码体系.加密原理:选择一个二阶可逆整数矩阵A称为密码的加密矩阵,也就是这个加密体系的密钥.加密过程: 明文字母依次逐对分组,例如加密矩阵为二阶矩阵,明文就两个字母一组,如果最 ...

  10. tensorflow-gpu2.1.0报错 so returning NUMA node zero解决办法

    >>> print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))2020-06-06 10:14:08.92 ...