一、问题描述

描述

在一个操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定在合并过程中最多可以有m(k)次选k堆石子合并成新的一堆,2≤k≤n,合并的费用为新的一堆的石子数。试设计一个算法,计算出将n堆石子合并成一堆的最小总费用。 对于给定n堆石子,计算合并成一堆的最小总费用。

输入

输入数据的第1 行有1 个正整数n(n≤100),表示有n 堆石子。第2行有n个数,分别表示每堆石子的个数。第3 行有n-1 个数,分别表示m(k)(2≤k≤n)的值。

输出Output

将计算出的最小总费用输出。问题无解时输出“No solution!”

Sample Input

7
45 13 12 16 9 5 22
3 3 0 2 1 0

Sample Output

136

问题分析

  • 首先用分支界限法(回溯法)找出每次合并石子堆数和可用次数v[i]
  • 然后对石子从小到大排序,每次取最小堆数合并石子(这样保证越往后合并的堆数就越多)
  • 这样就就可以保证最小输出

代码

#include<iostream>
#include<algorithm>
using namespace std; int n;
int p[201];
int m[101];
int v[101];
/**
分支界限法 找出每次合并石子堆数和可用次数
参数:第i次合并,还剩余sum堆石子
*/
bool branch(int i,int sum){
if(i==1){
if(sum==1)
return true;
else
return false;
}
for(int j=m[i];j>=0;j--){
v[i] = j;
if(sum-v[i]*(i-1)<=0){
continue;
}
if(branch(i-1,sum-v[i]*(i-1))){
return true;
}
}
return false;
} /**
把数组P中的第n-1个数据,插入到i到n-2数据里,
相当于把i到n从小到大排序
*/
void my_sorted(int i){
for (int j = n-1; j >= i; --j) {
if(p[j]<p[j-1]){
swap(p[j],p[j-1]);
}
else
break;
}
}
int main(){
cin>>n;
for (int i = 0; i < n; ++i) {
cin>>p[i];
}
for (int i = 2; i <= n; ++i) {
cin>>m[i];
}
//判断是否有解,并且把每次需要合并多少堆石子求出来
if(!branch(n,n)){
cout<<"No solution!"<<endl;
return 0;
}
sort(p,p+n); // for(int i=0;i<=n;i++){
// cout<<v[i]<<' ';
// }
// cout<<endl; int min = 0;
int start = 0;
int num = n;
for (int i = 1; i <= num;i++) {
for(int k = 0;k < v[i];k++){
int min2 = 0;
for (int j = 0; j < i; ++j) {
min2 += p[start++];
}
p[n++] = min2;
min += min2;
my_sorted(start);
}
}
cout<<min<<endl;
}

多元Huffman编码变形—回溯法的更多相关文章

  1. javascript实现数据结构: 树和二叉树的应用--最优二叉树(赫夫曼树),回溯法与树的遍历--求集合幂集及八皇后问题

    赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支 ...

  2. 【数据压缩】Huffman编码

    1. 压缩编码概述 数据压缩在日常生活极为常见,平常所用到jpg.mp3均采用数据压缩(采用Huffman编码)以减少占用空间.编码\(C\)是指从字符空间\(A\)到码字表\(X\)的映射.数据压缩 ...

  3. Huffman编码实现电文的转码与译码

    //first thing:thanks to my teacher---chenrong      Dalian Maritime university /* 构造Huffman Tree思路: ( ...

  4. python 回溯法 子集树模板 系列 —— 19、野人与传教士问题

    问题 在河的左岸有N个传教士.N个野人和一条船,传教士们想用这条船把所有人都运过河去,但有以下条件限制: (1)修道士和野人都会划船,但船每次最多只能运M个人: (2)在任何岸边以及船上,野人数目都不 ...

  5. python 回溯法 子集树模板 系列 —— 17、找零问题

    问题 有面额10元.5元.2元.1元的硬币,数量分别为3个.5个.7个.12个.现在需要给顾客找零16元,要求硬币的个数最少,应该如何找零?或者指出该问题无解. 分析 元素--状态空间分析大法:四种面 ...

  6. python 回溯法 子集树模板 系列 —— 15、总结

    作者:hhh5460 时间:2017年6月3日 用回溯法子集树模板解决了这么多问题,这里总结一下使用回溯法子集树模板的步骤: 1.确定元素及其状态空间(精髓) 对每一个元素,遍历它的状态空间,其它的事 ...

  7. python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

    问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...

  8. [老文章搬家] 关于 Huffman 编码

    按:去年接手一个项目,涉及到一个一个叫做Mxpeg的非主流视频编码格式,编解码器是厂商以源代码形式提供的,但是可能代码写的不算健壮,以至于我们tcp直连设备很正常,但是经过一个UDP数据分发服务器之后 ...

  9. Huffman编码

    #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <cstdio> #include <cstri ...

随机推荐

  1. JAVA NIO 基础学习

    package com.hrd.netty.demo.jnio; import java.io.BufferedReader; import java.io.IOException; import j ...

  2. 一篇搞定Java集合类原理

    Java集合类实现原理 1.Iterable接口 定义了迭代集合的迭代方法 iterator() forEach() 对1.8的Lambda表达式提供了支持 2. Collection接口 定义了集合 ...

  3. 0 quickstart

    说明 使用的安装包有: Prism 6.3 Unity 4.0.1 基于Prism框架的应用程序都包含一个主项目和若干功能模块,主项目负责启动时初始化工作,包括依赖注入容器,定义Shell等等.功能模 ...

  4. 1. Spark的安装及介绍

    *以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第一部分是记录如何安装Spark?同时,简单介绍下Spark. 一.Spark安装 二.Spark介绍 一.Spark安装 如 ...

  5. 睿象云:为什么 Zabbix 告警如此火热?

    每当我们谈及监控工具的时候,Zabbix 总是最惹人瞩目的那一个.如同清晨荷叶上的剔透露珠,卓尔不凡:如同巷子末头的百年酒香,让人倾心.我们都知道 Zabbix 是监控工具里当仁不让的龙头大哥,却没几 ...

  6. linux kernel RCU 以及读写锁

    信号量有一个很明显的缺点,没有区分临界区的读写属性,读写锁允许多个线程进程并发的访问临界区,但是写访问只限于一个线程,在多处理器系统中允许多个读者访问共享资源,但是写者有排他性,读写锁的特性如下:允许 ...

  7. 主动关闭 time wait结构体

    /* * This is a TIME_WAIT sock. It works around the memory consumption * problems of sockets in such ...

  8. select限制之文件描述符限制

    1.一个进能够打开的最大文件描述符限制.可以通过两种方式修改ulimit -n :获取最大文件描述符个数ulimit -n 2048:修改为2048个 该限制的测试代码: 客户端程序: /* 1.se ...

  9. binary hacks读数笔记(readelf基本命令)

    一.首先对readelf常用的参数进行简单说明: readelf命令是Linux下的分析ELF文件的命令,这个命令在分析ELF文件格式时非常有用,下面以ELF格式可执行文件test为例详细介绍: 1. ...

  10. ISO/OSI参考模型

    ISO/OSI参考模型: 1.应用层:提供应用程序间通信.应用层与应用程序界面沟通,以达到展示给用户的目的.常见的协议:HTTP.HTTPS.FTP.TELNET.SSH.SMTP等 2.表示层:处理 ...