题意:

\(Q\leq5000\)次询问,每次问你有多少对\((x,y)\)满足\(x\in[1,n],y\in[1,m]\)且\(gcd(x,y)\)的质因数分解个数小于等于\(p\)。\(n,m,p\leq5e5\)。

思路:

题目即求

\[\sum_{k}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]\quad,k满足质因数个数\leq p
\]

令\(f(n)\)为\(gcd\)为\(n\)的对数,\(F(n)\)为\(gcd\)为\(n\)倍数的对数。

由莫比乌斯反演可得

\[\begin{aligned}
\sum_{k}\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k]
&=\sum_kf(k)\\
&=\sum_k\sum_{k|d}\mu(\frac{d}{k})F(d)\\
&=\sum_k\sum_{k|d}\mu(\frac{d}{k})\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\\
&=\sum_d\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor\sum_{k|d}\mu(\frac{d}{k})
\end{aligned}
\]

\(\sum_{k|d}\mu(\frac{d}{k})\)可以直接打表打出来。

直接枚举\(d\),因为\(\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\)很多都是重复的,那么我可以直接分块加速,先求\(\sum_{k|d}\mu(\frac{d}{k})\)的前缀和,然后每次选\(i\)~\(min(\lfloor \frac{n}{\lfloor \frac{n}{i}\rfloor}\rfloor,\lfloor \frac{m}{\lfloor \frac{m}{i}\rfloor}\rfloor)\)这个区间走,那么\(\sqrt{(min(n, m))}\)就遍历完了。

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e5 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9;
using namespace std;
int num[maxn], sum[21][maxn];
int mu[maxn], vis[maxn];
int prime[maxn], cnt;
void getmu(int n){
memset(vis, 0, sizeof(vis));
memset(mu, 0, sizeof(mu));
memset(num, 0, sizeof(num));
cnt = 0;
mu[1] = 1;
for(int i = 2; i <= n; i++) {
if(!vis[i]){
prime[cnt++] = i;
mu[i] = -1;
num[i] = 1;
}
for(int j = 0; j < cnt && prime[j] * i <= n; j++){
vis[i * prime[j]] = 1;
num[i * prime[j]] = num[i] + 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -mu[i];
}
}
} void init(){
memset(sum, 0, sizeof(sum)); //sum[p][d]:d的除数的质因子个数为p的sum(mu)
for(int i = 1; i <= 5e5; i++){
for(int j = i; j <= 5e5; j += i){
sum[num[i]][j] += mu[j / i];
}
}
for(int i = 1; i <= 5e5; i++){ //d的除数质因子个数小于p的sum(mu)
for(int j = 1; j <= 19; j++){
sum[j][i] += sum[j - 1][i];
}
} for(int i = 1; i <= 5e5; i++){
for(int j = 0; j <= 19; j++){
sum[j][i] += sum[j][i - 1];
}
}
}
int main(){
getmu(5e5);
init();
ll n, m;
int p, T;
scanf("%d", &T);
while(T--){
ll ans = 0;
scanf("%lld%lld%d", &n, &m, &p);
if(p > 19){
printf("%lld\n", n * m);
continue;
}
for(int i = 1; i <= min(n, m);){
int l, r;
l = i, r = min(n / (n / i), m / (m / i));
ans += 1LL * (n / i) * (m / i) * (sum[p][r] - sum[p][l - 1]);
i = r + 1;
}
printf("%lld\n", ans);
}
return 0;
}

HDU 4746 Mophues(莫比乌斯反演)题解的更多相关文章

  1. HDU 4746 Mophues (莫比乌斯反演应用)

    Mophues Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327670/327670 K (Java/Others) Total ...

  2. hdu 4746 Mophues 莫比乌斯反演+前缀和优化

    Mophues 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<=n, 1<=b<=m) 有Q组数据:(n, m, ...

  3. HDU 4746 Mophues 莫比乌斯反演

    分析: http://blog.csdn.net/acdreamers/article/details/12871643 分析参见这一篇 http://wenku.baidu.com/view/fbe ...

  4. Mophues HDU - 4746 (莫比乌斯反演)

    Mophues \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求出满足 \(gcd\left(a,b\right) = k\), ...

  5. HDU - 4746预处理莫比乌斯反演

    链接 求[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于等于p 直接暴力做特定超时,所以我们想办法预处理,对于p大于18(1到5e5的最大素数因子个数)的情况,每一对都满足条件,O(1) ...

  6. HDU 4746 Mophues【莫比乌斯反演】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4746 题意: 1≤x,y≤n , 求gcd(x,y)分解后质因数个数小于等k的(x,y)的对数. 分 ...

  7. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  8. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  9. HDU 1695 GCD 莫比乌斯反演

    分析:简单的莫比乌斯反演 f[i]为k=i时的答案数 然后就很简单了 #include<iostream> #include<algorithm> #include<se ...

随机推荐

  1. javascript判断浏览器访问,刷新,返回

    话不多说,直接上 if (window.performance.navigation.type === 0/* 正常访问 */) { // 你要干的事 } else if (window.perfor ...

  2. 计算机网络安全 —— 对称加密算法 DES

    一.对称加密算法概念 我们通过计算机网络传输数据时,如果无法防止他人窃听, 可以利用密码学技术将发送的数据变换成对任何不知道如何做逆变换人都不可理解的形式, 从而保证了数据的机密性.这种变换被称为加密 ...

  3. JAVA SSM整合流程以及注意点

    1.搭建整合环境 整合说明:SSM整合可以使用多种方式,咱们会选择XML + 注解的方式 先搭建整合的环境 先把Spring的配置搭建完成 再使用Spring整合SpringMVC框架 最后使用Spr ...

  4. 借助 AppleScript 一键打开工作空间

    我有个小毛病:同时只能在一个工程里工作. 假如让我开四五个 Webstorm,在工程里 A 改个Bug,然后又到工程 B 里加个需求,再去工程 C 发个版,切来切去一会儿就懵了. 于是有了这个项目:m ...

  5. Python程序中首行#!/usr/bin/env python的作用

    1.通常我们在pycharm中写程序的时候会在首行写上#!/usr/bin/env python 如: #!/usr/bin/env python3#-*-coding: UTF-8 -*-#Auth ...

  6. Vue技术点整理-vue.config.js

    1,proxy代理解决本地开发环境跨域问题 配置proxy代理后,proxy会将任何未知请求 (没有匹配到静态文件的请求) 代理到 https://192.168.3.49:8080 vue.conf ...

  7. maven高级笔记

    Maven高级 1.maven基础知识回顾 1.1 maven介绍 maven 是一个项目管理工具,主要作用是在项目开发阶段对Java项目进行依赖管理和项目构建. 依赖管理:就是对jar包的管理.通过 ...

  8. vuex-pathify 一个基于vuex进行封装的 vuex助手语法插件

    首先介绍一下此插件 我们的目标是什么:干死vuex 我来当皇上!(开个玩笑,pathify的是为了简化vuex的开发体验) 插件作者 davestewart github仓库地址 官方网站,英文 说一 ...

  9. mysql创建和使用数据库

    mysql连接和断开 mysql -h host -u user -p******** /*建议不要在命令行中输入密码,因为这样做会使其暴露给在您的计算机上登录的其他用户窥探*/ mysql -u u ...

  10. 2019牛客暑期多校训练营(第一场)I Points Division(dp+线段树优化)

    给你n个点,第i个点在的位置为(xi,yi),有两个属性值(ai,bi).现在让你把这n个点划分为A和B两个部分,使得最后不存在i∈A和j∈B,使得xi>=xj且yi<=yj.然后对于所有 ...