Word2Vec和LDA的区别与联系
Word2vec是目前最常用的词嵌入模型之一。是一种浅层的神经网络模型,他有2种网络结构,分别是CBOW(continues bag of words)和 skip-gram。Word2vec 其实是对”上下文-单词“矩阵进行学习,其中上下文由周围的几个单词组成,由此得到的词向量表示 更多的融入了上下文共现的特征。 也就是说,如果2个词所对应的Word2vec向量相似度较高,那么他们很可能经常在相同的上下文中出现。
LDA(Latent Dirichlet Allocation 隐狄利克雷模型)是主题模型(Topic Models)的一种计算方法。LDA是利用文档中单词的共现关系来对单词按主题聚类,也可以理解为‘文档-单词“矩阵进行分解,得到”文档-主题“和”主题-单词“两个概率分布。
Word2Vec和LDA的区别:
1、Word2vec是词聚类,属于词嵌入模型,LDA是主题词聚类,属于主题模型。主题模型和词嵌入模型最大的不同在于其模型本身,主题模型是一种基于概率图模型的生成式模型,其似然函数可以写成若干个条件概率连乘的形式,其中包含需要推测隐含变量(即主题);词嵌入模型一般表达为神经网络的形式,似然函数定义在网络输出之上。需要通过学习网络的权重以得到单词的稠密向量表示。
2、词向量所体现的是语义(semantic)和语法(syntactic)这些 low-level的信息。而LDA的主题词表现的是更 high-level的文章主题(topic)这一层的信息。比如:
1)计算词的相似度。同样在电子产品这个主题下,“苹果”是更接近于“三星”还是“小米”?
2)词的类比关系:vector(小米)- vector(苹果)+ vector(乔布斯)近似于 vector(雷军)。
3)计算文章的相似度。这个LDA也能做但是效果不好。而用词向量,即使在文章topic接近的情况下,计算出的相似度也能体现相同、相似、相关的区别。 反过来说,想用词向量的聚类去得到topic这一级别的信息也是很难的。很有可能,“苹果”和“小米”被聚到了一类,而“乔布斯”和“雷军”则聚到另一类。
Word2Vec和LDA的联系:
1、在方法模型上,他们两者是不同的,但是产生的结果从语义上来说,都是相当于近义词的聚类,只不过LDA是基于隐含主题的,WORD2VEC是基于词的上下文的,或者说LDA关注doc和word的共现,而word2vec真正关注的是word和context的共现。
2、主题模型通过一定的结构调整可以基于”上下文-单词“矩阵进行主题推理。同样的,词嵌入方法也可以根据”文档-单词“矩阵学习出词的隐含向量表示。
3、加入LDA的结果作为word embeddings的输入,可以增强文章分类效果。
参考:
https://blog.csdn.net/qq_29678299/article/details/88727380
http://www.voidcn.com/article/p-sczvqzls-tq.html
https://www.zhihu.com/question/40309730
Word2Vec和LDA的区别与联系的更多相关文章
- PCA与LDA的区别与联系
由于涉及内容较多,这里转载别人的博客: http://blog.csdn.net/sunmenggmail/article/details/8071502 其实主要在于:PCA与LDA的变换矩阵不同, ...
- 理解 LDA 主题模型
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...
- 通俗理解LDA主题模型(boss)
0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布. ...
- 我是这样一步步理解--主题模型(Topic Model)、LDA
1. LDA模型是什么 LDA可以分为以下5个步骤: 一个函数:gamma函数. 四个分布:二项分布.多项分布.beta分布.Dirichlet分布. 一个概念和一个理念:共轭先验和贝叶斯框架. 两个 ...
- 主成分分析(PCA)与线性判别分析(LDA)
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本 ...
- NLP获取词向量的方法(Glove、n-gram、word2vec、fastText、ELMo 对比分析)
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方 ...
- DSSM:深度语义匹配模型(及其变体CLSM、LSTM-DSSM)
导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下Query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSS ...
- 深度学习解决NLP问题:语义相似度计算
在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.C ...
- NLP自然语言处理
转:https://blog.csdn.net/qq_17677907/article/details/86448214 1.有哪些文本表示模型,它们各有什么优缺点? 文本表示模型是研究如何表示文 ...
随机推荐
- Gin + 七牛云对象存储
配置七牛云存储 创建存储空间 拿到密钥 安装七牛云对象存储SDK 推荐go.mod安装 // 将下面地址复制到go.mod,然后执行go mod download github.com/qiniu/a ...
- Ajax原理与图解
Ajax原理 Ajax 的全称是Asynchronous JavaScript and XML. Ajax的原理简单来说通过XmlHttpRequest对象来向服务器发异步请求,从服务器获得数据,然后 ...
- Spring mvc与springboot
org.springframework.boot.autoconfigure.web.servlet.WebMvcAutoConfiguration: viewResolver 类路径文件 把类路径下 ...
- Visual Studio 连接 SQL Server 关键代码
首先先把Visual Studio 上面工具打开-->连接数据库-->选择Microsoft SQL Server进入(有两种验证方式:1.windows验证方式[就是本机验证]:2.SQ ...
- Access数据库简介
一.Access数据库的简介 1.microsoft office access是由微软发布的关联式数据库管理系统.它结合了 microsoft jet database engine 和 图形用户界 ...
- 深圳-2020-java面试题分享
记录一下最近面试接触的面试题. 深圳掌众传媒: union 和union all区别 union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序: union All:对两个结果集进行 ...
- Mac MySQL 8.0 (免安装版) 主从集群搭建
一.下载解压包 打开 MySQL 官网地址:https://dev.mysql.com/downloads/mysql/ ,选择面安装版本. 二.解压文件 下载到合适文件夹,解压压缩包. 解压 mys ...
- 二、springboot项目使用seata实现分布式事务
所有文章 https://www.cnblogs.com/lay2017/p/12078232.html 正文 在上一篇文章中,我们简单地了解了一下什么是seata.它是来自阿里巴巴的内部项目不断地发 ...
- Python中repr(变量)和str(变量)的返回值有什么区别和联系
Python中repr(变量)和str(变量)都返回一个描述对象的字符串,二者有关联又有不同.由于Python3.0后都是新式类,我们的分析也是基于新式类进行的.基于object派生的新式类中二者之间 ...
- PyQt(Python+Qt)学习随笔:QTreeView的标题表头header相关属性
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 一.概述 在Qt Designer中,对于树型视图QTreeView,在属性在下面有专门一栏列出了跟 ...