LINK:Cards

不太会burnside引理 而这道题则是一个应用。

首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换.

burnside引理:

其中D(a_j)表示 在\(a_j\)这置换中的不动点的个数.

其实我们求出每个置换的不动点个数就行了.

循环很好求 每个循环都填一样的就是不动点了 直接dp一下即可.

code
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<ctime>
#include<cctype>
#include<queue>
#include<deque>
#include<stack>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000001
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(int i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE int i=n;i>=p;--i)
#define vep(p,n,i) for(RE int i=p;i<n;++i)
#define pii pair<int,int>
#define mk make_pair
#define RE register
#define P 1000000007ll
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
using namespace std;
char *fs,*ft,buf[1<<15];
inline char gc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline int read()
{
RE int x=0,f=1;RE char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f; }
const int MAXN=66;
int n,m,mod;
int r,b,g,ans;
int vis[MAXN];
int c[MAXN];
int f[21][21][21],mark[MAXN];
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=(ll)cnt*b%mod;
b=(ll)b*b%mod;p=p>>1;
}
return cnt;
}
inline int calc()
{
memset(f,0,sizeof(f));
memset(mark,0,sizeof(mark));
f[0][0][0]=1;int ww=0;
rep(1,n,i)
{
if(!mark[i])
{
int cnt=1;
mark[i]=1;
int j=i;
while(!mark[vis[j]])
{
j=vis[j];
mark[j]=1;++cnt;
}
c[++ww]=cnt;
}
}
rep(1,ww,T)
{
fep(r,0,i)fep(g,0,j)fep(b,0,k)
{
if(i>=c[T])f[i][j][k]=(f[i][j][k]+f[i-c[T]][j][k])%mod;
if(j>=c[T])f[i][j][k]=(f[i][j][k]+f[i][j-c[T]][k])%mod;
if(k>=c[T])f[i][j][k]=(f[i][j][k]+f[i][j][k-c[T]])%mod;
}
}
return f[r][g][b];
}
int main()
{
//freopen("1.in","r",stdin);
get(r);get(b);get(g);
get(m);n=r+b+g;get(mod);
rep(1,m,i)
{
rep(1,n,j)get(vis[j]);
ans=(ans+calc())%mod;
}
rep(1,n,j)vis[j]=j;
ans=(ans+calc())%mod;
ans=(ll)ans*ksm(m+1,mod-2)%mod;
put(ans);return 0;
}

luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点的更多相关文章

  1. luogu P1446 [HNOI2008]Cards

    题目链接 luogu P1446 [HNOI2008]Cards 题解 题意就是求染色方案->等价类 洗牌方式构成成了一个置换群 然而,染色数限制不能用polay定理直接求解 考虑burnsid ...

  2. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  3. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  4. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  5. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  6. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  7. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  8. 洛谷P1446/BZOJ1004 Cards Burnside引理+01背包

    题意:有n张牌,有R+G+B=n的3种颜色及其数量,要求用这三种颜色去染n张牌.n张牌有m中洗牌方式,问在不同洗牌方式下本质相同的染色方案数. 解法:这道题非常有意思,题解参考Hzwer学长的.我这里 ...

  9. 洛谷 P1446 [HNOI2008]Cards 解题报告

    P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...

随机推荐

  1. linux中编写同步文件的脚本

    搭集群最麻烦的就是修改配置文件,如果只用修改一个机器上的配置文件,然后用一个脚本就可以把配置文件同步到其他机器上,岂不快哉! 编写一个名为xsync的脚本文件: 作用: 将当前机器的文件,同步到集群所 ...

  2. Howdoo中文社区AMA总结(10月21日)

    10月21日Howdoo举办了中文社区的首次AMA活动,CEO -David Brierley和CMO -Jason Sibley加入到社群中与大家交流并回答社区成员的相关问题. 以下是精选的问题总结 ...

  3. day20 函数收尾+面向过程+模块

    目录 一.算法(二分法) 二.面向过程与函数式 1 编程范式/思想 2 面向过程 3 函数式 3.1 匿名函数与lambda 三.模块 1 什么是模块 2 为何要有模块 3 怎么用模块 3.1第一次导 ...

  4. robotframework日志输出中文乱码以及robotframework常用关键字-笔者亲测

    一.环境说明 python版本:3.7.3 robotframework版本:3.1 robotframwork-ride版本:1.7.4.2 二.问题描述

  5. mui点击蒙版点击蒙版让其不自动关闭

    var mask = mui.createMask(callback);//callback为用户点击蒙版时自动执行的回调: mask.show();//显示遮罩 mask.close();//关闭遮 ...

  6. redis(十四):Redis 有序集合(sorted set)

    Redis 有序集合(sorted set) Redis 有序集合和集合一样也是string类型元素的集合,且不允许重复的成员. 不同的是每个元素都会关联一个double类型的分数.redis正是通过 ...

  7. A Great Alchemist 最详细的解题报告

    题目来源:A Great Alchemist A Great Alchemist Time limit : 2sec / Stack limit : 256MB / Memory limit : 25 ...

  8. 问题:IE11下window.history.go(-1)返回404

    解决方法: 在后面添加return false,如: onclick="javascript:window.history.go(-1);return false" 这个问题在IE ...

  9. 将python3打包成为exe可执行文件(pyinstaller)

    我们工作中可能会遇到,客户需要一个爬虫或者其他什么功能的python脚本. 这个时候,如果我们直接把我们的python脚本发给客户,会有两个问题: 1.客户的电脑或者服务器可能并没有安装python环 ...

  10. 基于python的自动化测试简介【十年从业大佬】

    一.自动化测试包括以下几个方面: 1. 常用测试工具: (1)QTP:主要用于回归测试和测试同一软件的新版本 (2)Robot Framwork:python编写的功能自动化测试框架,具有良好的可扩展 ...