LINK:多项式 exp

做多项式的题 简直在嗑药。

前置只是 泰勒展开

这个东西用于 对于一个函数f(x) 我们不好得到 其在x处的取值。

所以另外设一个函数g(x) 来在x点处无限逼近f(x).

具体的 \(f(x) ≈ g(x)=g(0)+\frac{f^1(0)}{1!}x+\frac{f^2(0)}{2!}x^2+...+\frac{f^n(0)}{n!}x^n\)

牛顿迭代:

常用来求一个函数的零点:假设我们已经求得一个近似值x0 那么我们只需要过(x0,f(x0))这个点做函数图像的切线 取切线与x轴的交点作为新的x0.

迭代几次就可以比较精确。

如:现在要求一个函数f(x) 近似值为x0 y=f'(x0)(x-x0)+f(x0);

y=0时 \(x=x0-\frac{f(x0)}{f'(x0)}\)

当然也可以放到多项式上 现在要求一个G(x) 我们想要求出F(G(x))=0的零点G(x).

\(G(x)=G0(x)-\frac{F(G0(x))}{F'(G0(x))}\)

本质上每迭代一次都可以迅速逼近真实值。

如果\(F(G0(x))≡0(\bmod x^{2n})\)那么\(F(G(x))\equiv 0(\bmod{x^{n}})\)

关于这道题的推导过程:

\(B(x)\equiv e^{A(x)}(\bmod x^n)\)

\(InB(x)-A(x)\equiv 0(\bmod x^n)\)

现在设一个函数\(F(G(x))=InG(x)-A(x)\equiv 0\)

其实在求F这个函数的零点.

两边直接求导可得 \((F(G0(x)))'=\frac{G'0(x)}{G0(x)}\)

带入牛顿迭代的式子里。

\(G(x)=\frac{G0(x)(1-InG0(x)+A(x))}{G'0(x)}\)

每次迭代需要 求逆 做多项式In 再来一遍多项式乘法即可。

废什么话 码!

求导 和 积分需要仔细熟悉一下.

const int MAXN=600010,G=3;
int n;
int A[MAXN],B[MAXN],E[MAXN],F[MAXN],C[MAXN],D[MAXN],g[MAXN],rev[MAXN],inv[MAXN],O[MAXN];
inline int mul(int a,int b){return (ll)a*b%mod;}
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline int mus(int a,int b){return a-b<0?a-b+mod:a-b;}
inline int ksm(int b,int p)
{
int cnt=1;
while(p)
{
if(p&1)cnt=mul(cnt,b);
p=p>>1;b=mul(b,b);
}
return cnt;
}
inline void NTT(int *a,int op,int ww)
{
int lim=1;while(lim<ww)lim=lim<<1;
rep(0,lim-1,i)
{
rev[i]=rev[i>>1]>>1|((i&1)?lim>>1:0);
if(i<rev[i])swap(a[i],a[rev[i]]);
}
for(int len=2;len<=lim;len=len<<1)
{
int mid=len>>1;
int wn=ksm(G,op==1?(mod-1)/len:mod-1-(mod-1)/len);
O[0]=1;rep(1,mid-1,i)O[i]=(ll)O[i-1]*wn%mod;
for(int j=0;j<lim;j+=len)
{
for(int i=0;i<mid;++i)
{
int x=a[i+j],y=(ll)a[i+j+mid]*O[i]%mod;
a[i+j]=(x+y)%mod;a[i+j+mid]=(x-y+mod)%mod;
}
}
}
if(op==-1)for(int i=0,inv=ksm(lim,mod-2);i<lim;++i)a[i]=(ll)a[i]*inv%mod;
}
inline void Direv(int *a,int *b,int len)//求导
{
rep(0,len-2,i)b[i]=mul(a[i+1],i+1);b[len-1]=0;
}
inline void Inv(int *a,int *b,int len)
{
if(len==1)return b[0]=ksm(a[0],mod-2),void();
Inv(a,b,len>>1);rep(0,len-1,i)C[i]=a[i],D[i]=b[i];
NTT(C,1,len<<1);NTT(D,1,len<<1);
rep(0,(len<<1)-1,i)D[i]=mul(D[i],mul(D[i],C[i]));
NTT(D,-1,len<<1);
rep(0,len-1,i)b[i]=((ll)2*b[i]-D[i]+mod)%mod;
rep(0,(len<<1)-1,i)C[i]=D[i]=0;
}
inline void Inter(int *a,int *b,int len)
{
rep(1,len-1,i)b[i]=mul(a[i-1],inv[i]);b[0]=0;
}
inline void Ln(int *a,int *b,int len)
{
Inv(a,E,len);Direv(a,F,len);
NTT(E,1,len<<1);NTT(F,1,len<<1);
rep(0,(len<<1)-1,i)E[i]=mul(E[i],F[i]);
NTT(E,-1,len<<1);Inter(E,b,len);
rep(0,(len<<1)-1,i)E[i]=F[i]=0;
}
inline void Exp(int *a,int *b,int len)
{
if(len==1)return b[0]=1,void();
Exp(a,b,len>>1);Ln(b,g,len);
g[0]=(a[0]+1-g[0]+mod)%mod;
rep(1,len-1,i)g[i]=mus(a[i],g[i]);
NTT(g,1,len<<1);NTT(b,1,len<<1);
rep(0,(len<<1)-1,i)b[i]=mul(b[i],g[i]);
NTT(b,-1,len<<1);rep(len,(len<<1)-1,i)g[i]=b[i]=0;
}
int main()
{
//freopen("1.in","r",stdin);
get(n);rep(0,n-1,i)get(A[i]);
int len=1;while(len<n)len=len<<1;
inv[1]=1;rep(2,(len<<1),i)inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
Exp(A,B,len);rep(0,n-1,i)put_(B[i]);return 0;
}

luogu P4726 【模板】多项式指数函数 多项式 exp 牛顿迭代 泰勒展开的更多相关文章

  1. 洛谷P4726 【模板】多项式指数函数(多项式exp)

    题意 题目链接 Sol 多项式exp,直接套泰勒展开的公式 \(F(x) = e^{A(x)}\) 求个导\(F'(x) = A(x)\) 我们要求的就是\(G(f(x)) = lnF(x) - A( ...

  2. luogu P4726 多项式指数函数(模板题FFT、多项式求逆、多项式对数函数)

    手动博客搬家: 本文发表于20181127 08:39:42, 原地址https://blog.csdn.net/suncongbo/article/details/84559818 题目链接: ht ...

  3. Luogu 4726 【模板】多项式指数函数

    补补补…… 这个题的解法让我认识到了泰勒展开的美妙之处. 泰勒展开 泰勒展开就是用一个多项式型的函数去逼近一个难以准确描述的函数. 有公式 $$f(x)\approx g(x) = g(x_0) + ...

  4. [洛谷P4726]【模板】多项式指数函数

    题目大意:给出$n-1$次多项式$A(x)$,求一个 $\bmod{x^n}$下的多项式$B(x)$,满足$B(x) \equiv e^{A(x)}$. 题解:(by Weng_weijie) 泰勒展 ...

  5. 牛顿迭代,多项式求逆,除法,开方,exp,ln,求幂

    牛顿迭代 若 \[G(F_0(x))\equiv 0(mod\ x^{2^t})\] 牛顿迭代 \[F(x)\equiv F_0(x)-\frac{G(F_0(x))}{G'(F_0(x))}(mod ...

  6. 【loj6538】烷基计数 加强版 加强版 Burnside引理+多项式牛顿迭代

    别问我为啥突然刷了道OI题,也别问我为啥花括号不换行了... 题目描述 求含 $n$ 个碳原子的本质不同的烷基数目模 $998244353$ 的结果.$1\le n\le 10^5$ . 题解 Bur ...

  7. LOJ #6538. 烷基计数 加强版 加强版(生成函数,burnside引理,多项式牛顿迭代)

    传送门. 不妨设\(A(x)\)表示答案. 对于一个点,考虑它的三个子节点,直接卷起来是\(A(x)^3\),但是这样肯定会计重,因为我们要的是无序的子节点. 那么用burnside引理,枚举一个排列 ...

  8. 【Cogs2187】帕秋莉的超级多项式(多项式运算)

    [Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...

  9. 多项式总结&多项式板子

    多项式总结&多项式板子 三角/反三角是不可能放的(也不可能真香的 多项式乘法(DFT,FFT,NTT,MTT) 背板子 前置知识:泰勒展开 如果\(f(x)\)在\(x_0\)处存在\(n\) ...

随机推荐

  1. Spring源码解析——核心类介绍

    前言: Spring用了这么久,虽然Spring的两大核心:IOC和AOP一直在用,但是始终没有搞懂Spring内部是怎么去实现的,于是决定撸一把Spring源码,前前后后也看了有两边,很多东西看了就 ...

  2. 三、python函数详解

    函数的定义: 函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 定义规则: 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号(). 任何传入参数和自变量必须放在圆括号中间 ...

  3. MCMC随机采样

    1 MCMC蒙特卡罗方法 作为一种随机采样方法,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,以下简称MCMC)在机器学习,深度学习以及自然语言处理等领域都有广泛的应用,是很多 ...

  4. 机器学习实战基础(二十六):sklearn中的降维算法PCA和SVD(七) 附录

  5. It's time for Django

    本节内容 Django流程介绍 Django url Django view Django models Django template Django form Django admin Django ...

  6. C#文件说明

    Bin -- 用来存放编译的结果,是默认的输出路径,项目属性—>配置属性—>输出路径. obj -- 用于存放编译过程中生成的中间临时文件.增量编译:项目属性—>配置属性—>高 ...

  7. Quartz.Net系列(十六):Misfire策略在SimpleScheduler和CronScheduler中的使用

    1.场景 ①因为工作线程都在忙碌,所以导致某些Trigger得不到触发 也就是默认10个工作线程而我有15个Trigger同时触发 这就导致有5个不能被触发,而不幸的是Trigger所关联的Job执行 ...

  8. Web For Pentester靶场(xss部分)

    配置 官网:https://pentesterlab.com/ 下载地址:https://isos.pentesterlab.com/web_for_pentester_i386.iso 安装方法:虚 ...

  9. python怎么自学?今日头条技术大佬的真实经历分享

    大家好,我是武州,27岁,目前在字节跳动担任Python后端工程师一职. (摆拍一下,假装是保安) 在开始今天的文章之前,不知道你们有没有遇到过这样的问题: 大学没学到什么实质技术,毕业后找不到高薪的 ...

  10. STL源码剖析:仿函数

    仿函数就是函数对象 函数对象: 重载了operator()的类对象 使用起来和普通函数一致,所以称为函数对象或是仿函数 STL中对于仿函数的参数进行了特殊处理,定义了两个特殊类,类里面只有类型定义 一 ...