Problem Description
The Sky is Sprite.

The Birds is Fly in the Sky.

The Wind is Wonderful.

Blew Throw the Trees

Trees are Shaking, Leaves are Falling.

Lovers Walk passing, and so are You. 

................................Write in English class by yifenfei

 

Girls are clever and bright. In HDU every girl like math. Every girl like to solve math problem!

Now tell you two nonnegative integer a and b. Find the nonnegative integer X and integer Y to satisfy X*a + Y*b = 1. If no such answer print "sorry" instead.
 

Input
The input contains multiple test cases.

Each case two nonnegative integer a,b (0<a, b<=2^31)
 

Output
output nonnegative integer X and integer Y, if there are more answers than the X smaller one will be choosed. If no answer put "sorry" instead. 
 

Sample Input

77 51
10 44
34 79
 

Sample Output

2 -3
sorry
7 -3

题意:给你两个数a,b,让你找到一个非负的整数x和一个整数y,使得ax+by=1,如果有多种情况,x要取最小的。ps:图还是挺好看的(笑)

思路:这是普通的欧几里德模板题,其中要使得x最小,那么先把特解x0求出来,那么最小的x就是(x0%b+b)%b.

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
ll extend_gcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1;y=0;return a;
}
ll d=extend_gcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
ll niyuan(ll a,ll n){
ll x,y;
ll d=extend_gcd(a,n,x,y);
if(d==1) return (x%n+n)%n;
else return -1;
}
ll gcd(ll a,ll b){
return b ? gcd(b,a%b) : a;
} int main()
{
ll n,m,b,d,a,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF)
{
if(gcd(a,b)!=1){
printf("sorry\n");continue;
}
d=extend_gcd(a,b,x,y);
ll x1;
x1=(x%b+b)%b;
ll t=(x1-x)/b;
printf("%lld %lld\n",x1,y-a*t);
}
return 0;
}

hdu2669Romantic (扩展欧几里德)的更多相关文章

  1. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  2. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  3. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  4. 51nod 1352 扩展欧几里德

    给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...

  5. CF 7C. Line(扩展欧几里德)

    题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...

  6. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  7. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  8. poj1061-青蛙的约会(扩展欧几里德算法)

    一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...

  9. HDU 1576 A/B【扩展欧几里德】

    设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> ...

随机推荐

  1. LeetCode145 二叉树的后序遍历

    给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? /** * Defin ...

  2. Tomcat的整体架构

    Tomcat通过连接器和容器这两个核心组件完成整体工作,连接器负责处理socket连接和网络字节流与Request和Response对象的转化:容器负责加载和管理Servlet,以及具体处理Reque ...

  3. Python 日志打印之logging.getLogger源码分析

    日志打印之logging.getLogger源码分析 By:授客 QQ:1033553122 #实践环境 WIN 10 Python 3.6.5 #函数说明 logging.getLogger(nam ...

  4. 【原创】X86_64汇编、寄存器、内嵌汇编

    整理的X86_64/X86汇编.寄存器.C内嵌汇编笔记,主要用于查阅使用. 目录 一.汇编语言 二.指令 数据传输指令 栈操作指令 push pop 运算指令 位操作 比较操作指令 标志寄存器 流控制 ...

  5. kubernets之pv以及pvc

    一 持久卷以及持久卷声明的由来 由于不管是哪种卷,开发者都需要提前预知kubernets集群里面的存储类型,这样就在一定程度上违背了kubernets集群的设计理念,kubernets的设计理念是在由 ...

  6. 攻防世界—pwn—cgpwn2

    题目分析 题目提示 checksec检查文件保护机制 使用ida查看伪代码 hello函数存在溢出,与level2类似 信息收集 system地址 name的地址 编写脚本 from pwn impo ...

  7. 利用sklearn进行字典&文本的特征提取

    写在前面 这篇博客主要内容: 应用DictVectorizer实现对类别特征进行数值化.离散化 应用CountVectorizer实现对文本特征进行数值化 特征提取API sklearn.featur ...

  8. OpenCV 和 Dlib 人脸识别基础

    00 环境配置 Anaconda 安装 1 下载 https://repo.anaconda.com/archive/ 考虑到兼容性问题,推荐下载Anaconda3-5.2.0版本. 2 安装 3 测 ...

  9. SpringBoot 自动配置:Spring Data JPA

    前言 不知道从啥时候开始项目上就一直用MyBatis,其实我个人更新JPA些,因为JPA看起来OO的思想更强烈些,所以这才最近把JPA拿出来再看一看,使用起来也很简单,除了定义Entity实体外,声明 ...

  10. cookie加密 当浏览器全面禁用三方 Cookie

    cookie加密    cookie  localstorage    区别 https://mp.weixin.qq.com/s/vHeRStcCUarwqsY7Y1rpGg 当浏览器全面禁用三方 ...