Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).


Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:


There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.



The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
先讲一下什么是差分约束(有最短路基础):
一、
1、比如一个二元方程组x-y<=w
我们最短路的转移方程是当d[x]>d[y]+w[y->x]成立的时候就会对d[x]重新赋值
而那个二元方程组是当x-y>w的时候才会用到这个方程组来限制
左右移项得到:x>y+w这个条件是不是和最短路的判断条件一样
这就相当与有一条y--->x长为w的边
2、再看一个二元方程组:x-y>=w
我们可以使他的左右两边同时乘与-1,就会转成上一个情况y-x<=-w
这个是当y>x+(-w)的时候才会用到
另外我们还可以按上一个写
这个式子当x-y<w的时候才会用到
左右移项得到:y>x-w
我们发现这两种方法得到的答案一样,所以我们再转移方程的时候可以用左右都乘与-1的方法来使所有方程的符号都一样
3、当出现等号的时候,如果w得知只能取到整数,即x==y
我们可以用两个方程组来代替它
x-y>=0
y-x>=0
然后把他们的符号和题目中其他方程组的符号化为一致就可以了
而、
我们采用这样的方法可以建立一个图,关于这个图的解,有以下三种模式
1、有解,从方程组中可以得到从起点到终点值
2、存在负环,这个样子从起点到终点的距离就无法算出来
3、从起点到终点没有直接或间接连在一起
可见,只有第一种模式才可以算出来结果
可以说本题了。。。。
 
 
题意:有N头牛,编号1-N, 他们进食,按照编号顺序站成一排, 在他们之间有些牛,关系好, 所以希望彼此间的距离不超过一定值,有的关系差,希望距离至少是某值, 此外,牛的性格比较倔,所以有可能由多头牛挤在同一位置上,先给出关系好的信息,(AL, BL, DL),再给出关系差的信息( AH, BH, DH ),求1号和N号的最大距离。
如果不存在任何一种排列方法满足条件,则输出-1,无限大则输出-2;
提取信息:
x:第一头牛
y:第二头牛
第一种:y-x<=w
第二种:y-x>=w
第三:X(i+1)>=X(i)
我们可以把它们的符号都化为一样的
(1)、把他们都转化为<=
1、y-x<=w    <===>   y<=w+x
2、y-x>=w    <===>   x-y<=-w  <===>   x<=y-w
3、X(i+1)>=X(i)   <===>   X(i)<=X(i+1)+0
抽象一下:d[u]<=d[v]+w[v-->u]
当d[u]>d[v]+w[v-->u] 的是侯才会使用这个式子
那就建立一条v------->u值为w的边
那么1、------------>w[x--->y]=w;
       2、------------->w[y--->x]=-w;
       3、------------->w[(i+1)--->i]=0;
就按照这个建图就可以了
代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<queue>
6 using namespace std;
7 const int INF=0x3f3f3f3f;
8 int d[1005],dis[1005];
9 struct shudui
10 {
11 int start,value;
12 }str1;
13 vector<shudui>w[1005];
14 queue<int>r;
15 int main()
16 {
17 int n,m,k;
18 scanf("%d%d%d",&n,&m,&k);
19 while(m--)
20 {
21 int x,y,z;
22 scanf("%d%d%d",&x,&y,&z);
23 str1.start=y;
24 str1.value=z;
25 w[x].push_back(str1);
26 }
27 while(k--)
28 {
29 int x,y,z;
30 scanf("%d%d%d",&x,&y,&z);
31 str1.start=x;
32 str1.value=-z;
33 w[y].push_back(str1);
34 }
35 for(int i=1;i<n;++i)
36 {
37 str1.start=i;
38 str1.value=0;
39 w[i+1].push_back(str1);
40 }
41 memset(d,INF,sizeof(d));
42 r.push(1);
43 r.push(1);
44 d[1]=0;
45 int flag=0;
46 while(!r.empty())
47 {
48 int x=r.front();
49 r.pop();
50 int y=r.front();
51 r.pop();
52 dis[x]=0;
53 if(y>n)
54 {
55 flag=1;
56 break;
57 }
58 int len=w[x].size();
59 for(int i=0;i<len;++i)
60 {
61 str1=w[x][i];
62 if(d[str1.start]>d[x]+str1.value)
63 {
64 d[str1.start]=d[x]+str1.value;
65 if(dis[str1.start]) continue;
66 r.push(str1.start);
67 r.push(y+1);
68 }
69 }
70 }
71 if(d[n]!=INF && !flag)
72 printf("%d\n",d[n]);
73 else if(d[n]==INF) printf("-2\n");
74 else if(flag) printf("-1\n");
75 return 0;
76 }

我们还要考虑个问题

本题是让我们求最大值,但是我们建图后为什么求最短路而不是求最长路?

参考博客:https://www.cnblogs.com/cenariusxz/p/4785284.html

首先,我们在最短路初始化的时候所有点的dis值均为INF(极大值),也就是说一开始我们认为n点距离1点是无穷大的。

而对于某一条边 d[v] ≤ d[u] + w(即使≥的也是从这个式子转化而成的),也就是u和v之间距离不能超过w这个条件,只会在d[v] > d[u] + w的时候即u和v之间距离超过w时才会被用来松

弛,而松弛的结果也是使两点距离变成可接受范围内的最大值w,也就是每个边只是松弛到可接受范围内的最大值的。

如果u和v之间的距离已经被其他约束条件限制而小于w了,那么这个条件也就不会起作用也不会使其值更小了,因此最短路求的就是可接受范围内1到n距离的最大值了。

如果是 d[u] - d[v] < w,一般利用整数的情况,就是 d[u] - d[v] ≤ w - 1,也可以顺利建图。

如果是 d[u] - d[v] > w,则建立 d[v] - d[u] ≤ -w-1。

建图之后最大值求最短路,最小值求最长路即可。

更多差分约束题目见:https://blog.csdn.net/whereisherofrom/article/details/78922648

 
 
 
 

S - Layout (最短路&&差分约束)的更多相关文章

  1. POJ-3169 Layout 最短路 差分约束

    题目链接:https://cn.vjudge.net/problem/POJ-3169 题意 Farmer John手下的一些牛有自己喜欢的牛,和讨厌的牛 喜欢的牛之间希望距离在给定距离D之内 讨厌的 ...

  2. [Usaco2005 dec]Layout 排队布局 差分约束

    填坑- 差分约束一般是搞一个不等式组,求xn-x1的最大最小值什么的,求最大值就转化成xa<=xb+w这样的,然后建图跑最短路(这才是最终约束的),举个例子 x1<=x0+2x2<= ...

  3. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  4. POJ 3169 Layout (图论-差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6574   Accepted: 3177 Descriptio ...

  5. 【最短路·差分约束】洛谷P1250

    题目描述 一条街的一边有几座房子.因为环保原因居民想要在路边种些树.路边的地区被分割成块,并被编号成1..N.每个部分为一个单位尺寸大小并最多可种一棵树.每个居民想在门前种些树并指定了三个号码B,E, ...

  6. Candies POJ - 3159 (最短路+差分约束)

    During the kindergarten days, flymouse was the monitor of his class. Occasionally the head-teacher b ...

  7. bzoj 1731: [Usaco2005 dec]Layout 排队布局 ——差分约束

    Description 当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些.FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食.奶牛排在队伍中的顺序和它们的编号是相 ...

  8. 转载 - 最短路&差分约束题集

    出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548    A strange lift基础最短路(或bfs)★ ...

  9. 最短路 & 差分约束 总结

     一.引例      1.一类不等式组的解 二.最短路       1.Dijkstra       2.图的存储       3.链式前向星       4.Dijkstra + 优先队列      ...

随机推荐

  1. Oracle数据库基础操作语法

    转载自:https://www.cnblogs.com/fallen-seraph/p/10685997.html 一.登录Oracle数据库 首先运行Oracle数据库: 默认的有两个账号: 管理员 ...

  2. ajax跨域访问http服务--jsonp

    在前面一篇文章<Spring Cloud 前后端分离后引起的跨域访问解决方案>里我们提到使用ajax跨域请求其他应用的http服务,使用的是后台增加注解@CrossOrigin或者增加Co ...

  3. MySQL的索引优化分析(一)

    一.SQL分析 性能下降.SQL慢.执行时间长.等待时间长 查询语句写的差 索引失效关联查询太多join(设计缺陷) 单值索引:在user表中给name属性创建索引,create index idx_ ...

  4. 无限重置IDE过期时间插件 亲测可以使用

    相信破解过IDEA的小伙伴,都知道jetbrains-agent这个工具,没错,就是那个直接拖入到开发工具界面,一键搞定,so easy的破解工具!这个工具目前已经停止更新了,尽管还有很多小伙伴在使用 ...

  5. Assuming that agent dropped connection because of access permission

    Assuming that agent dropped connection because of access permission

  6. 【Linux】centos 7中,开机不执行rc.lcoal中的命令

    最近将一些需要开机启动的命令添加到了rc.local中 本想着开机就启动了,很省事 但是一次意外的重启,发现rc.local中的全部命令都没有执行 发现问题后,及时查找 参考:https://blog ...

  7. 一. SpringCloud简介与微服务架构

    1. 微服务架构 1.1 微服务架构理解 微服务架构(Microservice Architecture)是一种架构概念,旨在通过将功能分解到各个离散的服务中以实现对解决方案的解耦.你可以将其看作是在 ...

  8. Goby资产扫描工具安装及报错处理

    官网: https://cn.gobies.org/index.html 产品介绍: 帮企业梳理资产暴露攻击面,新一代网络安全技术,通过为目标建立完整的资产数据库,实现快速的安全应急. 已有功能: 扫 ...

  9. EXPORT和IMPORT使用示例

    1 report ztestprog. 2 data:begin of itab1 occurs 0, 3 ff(10), 4 end of itab1. 5 data:itab2 like itab ...

  10. BINARY SEARCH 的一点说明

    在sap 之abap语言中,有‍BINARY SEARCH这个查找条件.使用read table 来读取内表时,使用‍BINARY SEARCH可以大大的提高查找的效率,为什么呢?学过数据库的人会知道 ...