题目:在N*N的棋盘里面放k个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。

输入输出:输入N,K,输出有几种放置方法。(N<=9,k<=n^2)

样例输入输出:

入:3 2

出:16

这道题看范围就显然是状压dp了吧。。。

其实这道题和状压基础题玉米地(corn fields)非常相像,主要思路包括以下几点。

1.同一行不能有相邻的国王。

2.斜对角和正上正下不能有相邻的国王。

3.一共只有k个国王。

根据状压dp的一般尿性,肯定是要枚举状态的,那状态里面“ 1 ”,“ 0 ”表示什么含义呢?

肯定是“ 1 ”表示这一行这个位置放国王,“ 0 ”表示不放啊(废话++)

那思路就挺显然了。

1.枚举状态S,判断(S&(S<<1))==0,只有这样的S才是合法状态

2.枚举上一行状态s,判断((S&(s<<1))==0&&(S&(s>>1))==0&&(S&s)==0)分别对应右上,左上,正上。

3.主要麻烦的是这个k,怎么处理已经放了多少国王呢,这里我们可以用类似背包的思想,新开一维表示已经放入的国王数,然后由上一行较少国王数的状态转移过来(是不是很像背包的二维代码那个转移?可以把国王总数看作背包的容量,每一个国王就是背包中的一个个物品)

然后就没了。。。

附上全部代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e2+10;
typedef long long LL;
LL f[15][1<<10][80];
int lowbit(int x){return x&-x;}
int find(int x){
int cnt=0;
for(int i=x;i;i-=lowbit(i)){
cnt++;
}
return cnt;
}
int main(){
int n,k;
scanf("%d%d",&n,&k);
int Max=(1<<n)-1;
f[0][0][0]=1;
for(int i=1;i<=n;i++){
for(int S=0;S<=Max;S++){
int cnt=find(S);
if((S&(S>>1))==0){
for(int s=0;s<=Max;s++){
if((S&s)==0 && ((S&(s<<1))==0) && (S&(s>>1))==0)
for(int kk=cnt;kk<=k;kk++){
              //这里用kk保存这一行所放置的国王数,要注意,在S状态下,已经有cnt个国王放置了,所以要从这再往上遍历
f[i][S][kk]+=f[i-1][s][kk-cnt];
}
}
}
}
}
LL ans=0;
for(int S=0;S<=Max;S++){
ans+=f[n][S][k];
}
printf("%lld",ans);
return 0;
}

互不侵犯(洛谷P1896)的更多相关文章

  1. 1896 互不侵犯 洛谷 luogu

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...

  2. 洛谷 P1896 [SCOI2005]互不侵犯

    洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...

  3. 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)

    洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...

  4. 洛谷P1896||bzoj1087 [SCOI2005]互不侵犯

    bzoj1087 洛谷P1896 想了很久,太久没做状压都已经不会了... 状压每一行就好了 #include<cstdio> #include<algorithm> #inc ...

  5. 洛谷 P1896 互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  6. 状压DP【洛谷P1896】 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子 ...

  7. 洛谷P1896 [SCOI2005]互不侵犯King

    P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...

  8. 洛谷——P1896 [SCOI2005]互不侵犯

    P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...

  9. 状压DP概念 及例题(洛谷 P1896 互不侵犯)

    状压DP 就是状态压缩DP.所谓状态压缩,就是将一些复杂的状态压缩起来,一般来说是压缩为一个二进制数,用01来表示某一元素的状态. 比如一排灯泡(5个) 我们可以用一串二进制01串来表示他们的状态 1 ...

  10. BZOJ1087=Codevs2451=洛谷P1896&P2326互不侵犯

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2885  Solved: 1693[Submit][ ...

随机推荐

  1. SpringMVC-08-SpringMVC层编写

    SpringMVC层编写 web.xml DispatcherServlet <!--DispatcherServlet--> <servlet> <servlet-na ...

  2. 设计模式也可以这么简单(7年开发老鸟PS注释总结)

    设计模式是对大家实际工作中写的各种代码进行高层次抽象的总结,其中最出名的当属 Gang of Four (GoF) 的分类了,他们将设计模式分类为 23 种经典的模式,根据用途我们又可以分为三大类,分 ...

  3. SpringBoot集成Nacos

    一.环境说明 1.CentOS7 2.Jdk1.8 3.Mysql5.7 4.Nacos1.3 5.SpringBoot2.3.1.RELEASE 6.Maven3.6 二.下载Nacos 1.Nac ...

  4. 《Redis内存数据库》Redis环境搭建

    前言 Redis(Remote Dictionary Server ),即远程字典服务,是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多 ...

  5. webstorm中emmet展开a标签和行内元素不换行的解决办法

    大家好我是木瓜太香,大家在使用 webstorm 编写 html 的时候可能会遇到展开部分标签挨在一起的情况,相信很多小伙伴都想解决这个问题,接下来我们就开始吧! 先来看看我们输入如下 emmet 代 ...

  6. RocketMQ的发送模式和消费模式

    前言 小伙伴们大家好啊,王子又来和大家一起闲谈MQ技术了. 通过之前文章的学习,我们已经对RocketMQ的基本架构有了初步的了解,那今天王子就和大家一起来点实际的,用代码和大家一起看看RocketM ...

  7. 教你一招Linux下文本比对方法

    我们在写代码的过程中,免不了会对代码进行一些修修改改.但经常会出现改着改着,就不知道改完后与源文件的差异是怎样的.这里,我们就需要一个文本比对工具来进行文本比对. 有经验的程序员都知道,Windows ...

  8. [CF571B]Minimization(贪心+DP)

    题目链接 http://codeforces.com/problemset/problem/571/B 题意 给数组,得到公式最小值. 题解 由题分成的子数组只有两种长度,每种长度的数组数量也是固定的 ...

  9. 论文阅读笔记: Natural Language Inference over Interaction Space

    这篇文章提出了DIIN(DENSELY INTERACTIVE INFERENCE NETWORK)模型. 是解决NLI(NATURAL LANGUAGE INFERENCE)问题的很好的一种方法. ...

  10. 生命周期(初始化、销毁方法、BeanPostProcessor后处理Bean)

    1.初始化和销毁 在目标方法执行前后进行初始化或销毁 (1)在Service方法的实现类里面创建初始化方法和销毁方法: public class StudentServiceImpl implemen ...