OpenCV之高斯平滑(Python实现)
假设一个列数为W,行数为H的高斯卷计算子gaussKernel,其中W,H均为奇数,描点位置在((H-1)/2 ,(W-1)/2),构建高斯卷积核的步骤如下
1.计算高斯矩阵
\]
2.计算高斯矩阵的和
\]
3.高斯矩阵除以其本身的和,也就是归一化
\]
下面利用Python来实现构建高斯卷积算子
def getGaussKernel(sigma, H, W):
r, c = np.mgrid[0:H:1, 0:W:1]
r -= (H - 1) / 2
c -= (W - 1) / 2
gaussMatrix = np.exp(-0.5 * (np.power(r) + np.power(c)) / math.pow(sigma, 2))
# 计算高斯矩阵的和
sunGM = np.sum(gaussMatrix)
# 归一化
gaussKernel = gaussMatrix / sunGM
return gaussKernel
高斯卷积核可以分离成一维水平方向上的高斯核和一维垂直方向上的高斯核,在OpenCV中给出了构建一维垂直方向上的高斯卷积核的函数:
Mat getGaussianKernel(int ksize, double sigma, in ktype = CV/_64F)
| 参数 | 释意 |
|---|---|
| ksize | 一维垂直方向上的高斯核行数,正奇数 |
| sigma | 标准差 |
| ktype | 返回值的数据类型为CV_32F或CV_64F,默认是CV_64F |
下面通过Python代码来具体的实现图像的高斯平滑,我们首先会对图像水平方向进行卷积,然后再对垂直方向进行卷积,其中sigma代表高斯卷积核的标准差
def gaussBlur(image,sigma,H,W,_boundary = 'fill', _fillvalue = 0):
#水平方向上的高斯卷积核
gaussKenrnel_x = cv2.getGaussianKernel(sigma,W,cv2.CV_64F)
#进行转置
gaussKenrnel_x = np.transpose(gaussKenrnel_x)
#图像矩阵与水平高斯核卷积
gaussBlur_x = signal.convolve2d(image,gaussKenrnel_x,mode='same',boundary=_boundary,fillvalue=_fillvalue)
#构建垂直方向上的卷积核
gaussKenrnel_y = cv2.getGaussianKernel(sigma,H,cv2.CV_64F)
#图像与垂直方向上的高斯核卷积核
gaussBlur_xy = signal.convolve2d(gaussBlur_x,gaussKenrnel_y,mode='same',boundary= _boundary,fillvalue=_fillvalue)
return gaussBlur_xy
if __name__ == "__main__":
image = cv2.imread("../images/timg.jpg", cv2.IMREAD_GRAYSCALE)
cv2.imshow("image",image)
#高斯平滑
blurImage = gaussBlur(image, 5, 400, 400, 'symm')
#对bIurImage进行灰度级显示
blurImage = np.round(blurImage)
blurImage = blurImage.astype(np.uint8)
cv2.imshow("GaussBlur", blurImage)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行截图:

OpenCV之高斯平滑(Python实现)的更多相关文章
- OpenCV笔记(2)(高斯平滑、腐蚀和膨胀、开闭运算、礼帽和黑帽、Sobel及其他算子)
一.高斯平滑(模糊) def gaussian_blur(image): # 设置ksize来确定模糊效果 img = cv.GaussianBlur(image, (5, 5), 0) cv.ims ...
- java实现高斯平滑
高斯模糊也叫作高斯平滑,这里主要用来实现图像降噪.官方有入门教程:http://opencv-java-tutorials.readthedocs.io/en/latest/ 实现代码如下: pack ...
- Ubuntu下OpenCV不能被某个python版本识别
Ubuntu下OpenCV不能被某个python版本识别 Solution: 可以进入相应版本的python,查看该python的path: python import sys print(sys.p ...
- OpenCV混合高斯模型函数注释说明
OpenCV混合高斯模型函数注释说明 一.cvaux.h #define CV_BGFG_MOG_MAX_NGAUSSIANS 500 //高斯背景检测算法的默认参数设置 #define CV_BGF ...
- Install OpenCV 3.0 and Python 2.7+ on OSX
http://www.pyimagesearch.com/2015/06/15/install-OpenCV-3-0-and-Python-2-7-on-osx/ As I mentioned las ...
- Install OpenCV 3.0 and Python 2.7+ on Ubuntu
为了防止原文消失或者被墙,转载留个底,最好还是去看原贴,因为随着版本变化,原贴是有人维护升级的 http://www.pyimagesearch.com/2015/06/22/install-Open ...
- OpenCV实践之路——Python的安装和使用
本文由@星沉阁冰不语出品,转载请注明作者和出处. 文章链接:http://blog.csdn.net/xingchenbingbuyu/article/details/50936076 微博:http ...
- 在mac osX下安装openCV,used for python
OpenCV是个开源的图像处理库,里面的内容多多. 想了解很多其它,请自行百度咯~ 篇blog是记录在mac下.安装openCV.然后使用python来引用openCV库. 环境是: Python 2 ...
- 【计算机视觉】OpenCV篇(6) - 平滑图像(卷积/滤波/模糊/降噪)
平滑滤波 平滑滤波是低频增强的空间域滤波技术.空间域滤波技术即不经由傅立叶转换,直接处理影像中的像素,它的目的有两类:一类是模糊:另一类是消除噪音.空间域的平滑滤波一般采用简单平均法进行,就是求邻近像 ...
随机推荐
- mysql中常见约束
#常见约束 /* 含义:一种限制,用于限制表中的数据,为了保证表中的数据的准确和可靠性 分类:六大约束 NOT NULL:非空,用于保证该字段的值不能为空 比如姓名.学号等 DEFAULT:默认,用于 ...
- 软件测试工程师入门——Linux【使用说明书】
先来说一下linux是什么? linux 是一个开源.免费的操作系统,其稳定性.安全性.处理多并发已经得到业界的认可,目前很多中性,大型甚至是巨型项目都在使用linux. linux 内核:redha ...
- git配置httpd服务-web_dav模式
1,搭建httpd应用 2,修改httpd.conf文件 注释 DocumentRoot "/data/httpd/htdocs" 注释 <Directory "/ ...
- [开源硬件DIY] 自制一款精致炫酷的蓝牙土壤温湿度传感器,用于做盆栽呵护类产品(API开放,开发者可自行DIY微信小程序\安卓IOS应用)
目录 前言: 1. 成品展示 2. 原理图解析 3. pcb设计 4. 嵌入式对外提供接口 4.1 蓝牙广播 4.2 蓝牙服务和属性 4.3 数据包格式 4.4 数据通信模型 重要 . 前言: 本期给 ...
- spring +ActiveMQ 实战 topic selecter指定接收
spring +ActiveMQ 实战 topic selecter指定接收 queue:点对点模式,一个消息只能由一个消费者接受 topic:一对多,发布/订阅模式,需要消费者都在线(可能会导致信息 ...
- webview访问URL
// // Do any additional setup after loading the view. // //创建WKWebView // WKWebView *web = ...
- C# POST请求中raw 参数的传递
public static string PostmanPost() { var client = new RestClient("http://119.3.248.64:3000" ...
- R语言 循环语句、分支语句和中止语句-控制流篇
for 循环 用法 for (n in m) expr 若n在m中则运行 expr while 循环 用法 while (condition) expr 当符合condition时运行expr rep ...
- DVWA SQL 注入关卡初探
1. 判断回显 给id参数赋不同的值,发现有不同的返回信息 2. 判断参数类型 在参数后加 ' ,查看报错信息 数字型参数左右无引号,字符型参数左右有引号 4. 引号闭合与布尔类型判断 由于是字符型参 ...
- Android性能优化----卡顿优化
前言 无论是启动,内存,布局等等这些优化,最终的目的就是为了应用不卡顿.应用的体验性好坏,最直观的表现就是应用的流畅程度,用户不知道什么启动优化,内存不足,等等,应用卡顿,那么这个应用就不行,被卸载的 ...