P2764 最小路径覆盖问题 题解(二分图)
建图思路很明确,拆点跑最大匹配,但这明显是个二分图的题题解居然只有一篇匈牙利算法。
发一种和之前那篇匈牙利思路略有不同的题解。
本题的难点就是如何输出,那么我们不妨在建图的时候加入一个原则,即:连边时位于左图的顶点编号小于位于右图的。
也就是说,形如左图的边是允许的,而形如右图的边是不允许的。
这很好理解吧~
在输出的时候,只要不停往上找即可。
上代码
#include<stdio.h>
int n,m,e[200][200],vis[200],mt[200],p[200];
int dfs(int p,int t){
int i;
for(i=p;i<=n;i++){//从p开始找右半边匹配
if(e[p][i]&&vis[i]!=t){
vis[i]=t;
if(!mt[i]||dfs(mt[i],t))return mt[i]=p;
}
}
return 0;
}
int maxflow(){
int i,ans=0;
for(i=1;i<=n;i++)if(dfs(i,i))ans++;
return ans;
}
int main(){
int i,a,b,x;
scanf("%d%d",&n,&m);
for(i=0;i<m;i++){
scanf("%d%d",&a,&b);
if(a>b){int t=a;a=b;b=t;}//保证a<b
e[a][b]=1;
}
int ans=maxflow();
for(i=n;i;i--)if(!p[i]){
x=i;
do{
printf("%d ",x);
x=mt[x];p[x]=1;//p[i]表示已输出
}while(x);
printf("\n");
}
printf("%d",n-ans);
return 0;
}
P2764 最小路径覆盖问题 题解(二分图)的更多相关文章
- Luogu P2764 最小路径覆盖问题(二分图匹配)
P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- P2764 最小路径覆盖问题 网络流重温
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最 ...
- 网络流二十四题之P2764 最小路径覆盖问题
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径 ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- luogu P2764 最小路径覆盖问题
题目描述 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任 ...
- P2764 最小路径覆盖问题 (最小点覆盖=顶点数-最大匹配)
题意:最小路径覆盖 题解:对于一个有向图,最小点覆盖 = 顶点数 - 最大匹配 这里的最大匹配指的是将原图中每一个点拆成入点.出点, 每条边连接起点的出点和终点的入点 源点S连接每个点的出点,汇点T连 ...
- 洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...
- P2764 最小路径覆盖问题(网络流24题之一)
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
随机推荐
- 导出Excel出错
错误提示: 解决方法: 1.运行dcomcnfg打开组件服务. 2.依次展开"组件服务"->"计算机"->"我的电脑"-&g ...
- Leetcode(25)- k个一组翻转链表
给出一个链表,每 k 个节点一组进行翻转,并返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度.如果节点总数不是 k 的整数倍,那么将最后剩余节点保持原有顺序. 示例 : 给定这个链表: ...
- SQL优化汇总
今天面某家公司,然后问我SQL优化,感觉有点忘了,今天特此总结一下: 总结得是分两方面:索引优化和查询优化: 一. 索引优化: 1. 独立的列 在进行查询时,索引列不能是表达式的一部分,也不能是函数的 ...
- 计算机网络 part1 TCP
一.TCP协议 references:newcoder TCP/IP协议,TCP和UDP的区别及特点 1.四层模型 应用层:载有应用程序,将数据发送给传输层.主要协议有HTTP.SMTP.FTP.DN ...
- 加密算法大全图解 :密码体系,对称加密算法,非对称加密算法,消息摘要, Base64,数字签名,RSA,DES,MD5,AES,SHA,ElGamal,
1. 加密算法大全: ***************************************************************************************** ...
- Github OAuth All In One
Github OAuth All In One new https://docs.github.com/en/free-pro-team@latest/developers/apps/authoriz ...
- js currying All In One
js currying All In One 柯里化 refs https://juejin.im/post/6844903603266650125 xgqfrms 2012-2020 www.cnb ...
- Flutter in DartPad
Flutter in DartPad Gist Sharing https://github.com/dart-lang/dart-pad/wiki/Sharing-Guide https://gis ...
- js in depth: arrow function & prototype & this & constructor
js in depth: arrow function & prototype & this & constructor https://developer.mozilla.o ...
- PBN转弯保护区作图回顾
假期的最后一天,是该小结一下的时候了. 风螺旋有了自己中式风格的Logo,大家是否喜欢? 过去的春节假期,我们从学习CAD入手,回顾了风螺旋在PBN中的多种情况,画了很多的图,写了不少的文字,或许现在 ...