动态DP,ddp
动态DP?动态动态规划?
个人理解:动态DP,就是普通DP加修改操作,然后就变成了个毒瘤题。
直接就着例题写吧。
例题
P4719 【模板】"动态 DP"&动态树分治
求树上最大独立集。要求支持修改点权。n<=1e5.
算法原理
首先不带修的最大独立集是一个NOIP题:
\(f[cur][0/1]\) 表示 \(cur\) 选/不选 其子树内(含 \(cur\))的被选点权值和。
\]
\]
既然要求支持修改,我们可以拿出对付树的利器:树链剖分。将树剖分成重链和轻边。然后 \(f[cur][0/1]\) 含义不变,另设 \(g[cur][0/1]\) 表示不考虑重儿子的 \(f\)。那么有:
\]
\]
为了描述方便,规定 \(i + 1\) 为在重链上与 \(i\) 相邻的比 \(i\) 深的那个点。则:
\]
\]
然后我们发现这样老是[0][1]不方便,直接用 \(2×1\) 的矩阵来表示 \(f, g\),这样的话,我们就发现 \(f\) 矩阵可以由与 \(g\) 有关的矩阵递推:
g_{i,0} & g_{i, 0}\\
g_{i, 1} &
-\infty\end{bmatrix} × \begin{bmatrix}
f_{i+1, 0} \\
f_{i+1, 1}
\end{bmatrix}=\begin{bmatrix}
f_{i,0} \\
f_{i,1}
\end{bmatrix}\]
这样,我们就只用维护每个点的 \(g\) 矩阵,用到 \(f\) 的时候直接拿 \(g\) 矩阵乘一下即可。这个 \(g\) 矩阵是重链上的一堆矩阵,因此我们可以拿线段树维护。
现在考虑修改带来的影响
如果我们修改了某一个点的权值,那么这个点的 \(g\) 矩阵将会改变,不过重链上的其它 \(g\) 矩阵不会改变。但是,重量顶端的父亲的 \(g\) 矩阵会因为重链上的 \(f\) 的改变而改变,因此我们需要修改重链父亲的 \(g\) 矩阵,以及重链父亲所在重链的顶端的父亲的 \(g\) 矩阵...
流程大概是:修改 \(cur\) 的 \(g\) 矩阵,计算 \(top\) 的 \(f\),(如果 \(cur\) 尚不为树根),cur = fa[top[cur]],重复。
代码实现
具体实现的时候,我们自然可以严格按照流程的做法来。不过,相比树剖疯狂跳 \(fa[top]\),LCT的 \(Access\) 函数也可以较为轻松地实现这种操作,并且LCT可以将信息直接维护到点上,避开线段树无比笨拙的修改查询操作,砍掉一个 \(log\),而且还不用 \(makeroot\),因此不用 \(pushr,pushdown\),是为数不多的LCT比树剖好写的题。所以,这题用LCT维护原图子树信息是个不错的选择。
还有一些简化代码的小 trick:
一开始可以让所有边都为虚边,直接一遍DFS计算出所有 \(g\) 矩阵。
我们保持1为根节点不变;所有矩阵都可以开成 2×2 的矩阵。这是因为我们矩阵初始化全为 -inf,如果真的要拿一个 2×2 的矩阵和 2×1 的矩阵乘,由于 2×1 矩阵的第二列全为 -inf,最终结果的第二列也将是 -inf,并不会影响答案。
最终统计答案的时候,可以直接 \(splay(1)\) 然后就拿 1 节点的 \(mul\) 计算答案。本来应该是 1 所在的实链的底端的那个 \(f\) 矩阵乘其它的 \(g\) 矩阵,但是我们发现底端 \(g\) 矩阵的第一列恰好是 \(f\) 矩阵的第一列,因此乘出来的第一列就恰好是答案。
关键代码
略微感受到shadowice大佬考场调bug的感觉了,我还是刚学完ddp,理清思路再写,还写出了六七个bug。
int h[N];
matrix val[N], mul[N];
int son[N][2], fa[N];
inline void pushup(int cur) {
mul[cur] = val[cur];
int ls = son[cur][0], rs = son[cur][1];
if (ls) mul[cur] = mul[ls] * mul[cur];
if (rs) mul[cur] = mul[cur] * mul[rs];
}
inline void Access(int cur) {
for (register int p = cur, lst = 0; p; lst = p, p = fa[p]) {
splay(p);//Attention!
if (lst) {
val[p].h[0][0] -= max(mul[lst].h[0][0], mul[lst].h[1][0]);//Attention!!! : mul
val[p].h[1][0] -= mul[lst].h[0][0];//Attention!!! : mul
}
int rs = son[p][1];
if (rs) {
val[p].h[0][0] += max(mul[rs].h[0][0], mul[rs].h[1][0]);//Attention!!!
val[p].h[1][0] += mul[rs].h[0][0];//Attention!!!
}
val[p].h[0][1] = val[p].h[0][0];
son[p][1] = lst;
pushup(p);
}
}
int g[N][2];
void dfs(int cur, int faa) {
g[cur][1] = h[cur]; fa[cur] = faa;
for (register int i = head[cur]; i; i = e[i].nxt) {
int to = e[i].to; if (to == faa) continue;
dfs(to, cur);
g[cur][0] += max(g[to][0], g[to][1]);
g[cur][1] += g[to][0];
}
val[cur].h[0][0] = val[cur].h[0][1] = g[cur][0];
val[cur].h[1][0] = g[cur][1];//Attention!
mul[cur] = val[cur];
}
inline void modify(int cur, int v) {
Access(cur), splay(cur);
// val[cur].h[0][0] += v - h[cur];
// val[cur].h[0][1] = val[cur].h[0][0];
val[cur].h[1][0] += v - h[cur];//Attention!!!
h[cur] = v;//Attention!
pushup(cur);
}
int main() {
dfs(1, 0);
while (m--) {
modify(x, v);
splay(1);
ans = max(mul[1].h[0][0], mul[1].h[1][0]);
}
}
(双倍经验:P5024 保卫王国,只需要多想一点点)
动态DP,ddp的更多相关文章
- 洛谷P4719 【模板】动态dp(ddp LCT)
题意 题目链接 Sol 动态dp板子题.有些细节还没搞懂,待我研究明白后再补题解... #include<bits/stdc++.h> #define LL long long using ...
- 洛谷4719 【模板】动态dp 学习笔记(ddp 动态dp)
qwq大概是混乱的一个题. 首先,还是从一个比较基础的想法开始想起. 如果每次暴力修改的话,那么每次就可以暴力树形dp 令\(dp[x][0/1]\)表示\(x\)的子树中,是否选择\(x\)这个点的 ...
- 「校内训练 2019-04-23」越野赛车问题 动态dp+树的直径
题目传送门 http://192.168.21.187/problem/1236 http://47.100.137.146/problem/1236 题解 题目中要求的显然是那个状态下的直径嘛. 所 ...
- 【学习笔记】动态 dp 入门简易教程
序列 dp 引入:最大子段和 给定一个数列 \(a_1, a_2, \cdots, a_n\)(可能为负),求 \(\max\limits_{1\le l\le r\le n}\left\{\sum_ ...
- Note -「动态 DP」学习笔记
目录 「CF 750E」New Year and Old Subsequence 「洛谷 P4719」「模板」"动态 DP" & 动态树分治 「洛谷 P6021」洪水 「S ...
- 动态DP之全局平衡二叉树
目录 前置知识 全局平衡二叉树 大致介绍 建图过程 修改过程 询问过程 时间复杂度的证明 板题 前置知识 在学习如何使用全局平衡二叉树之前,你首先要知道如何使用树链剖分解决动态DP问题.这里仅做一个简 ...
- Luogu P4643 【模板】动态dp
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...
- 动态dp学习笔记
我们经常会遇到一些问题,是一些dp的模型,但是加上了什么待修改强制在线之类的,十分毒瘤,如果能有一个模式化的东西解决这类问题就会非常好. 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y ...
- 洛谷P4719 动态dp
动态DP其实挺简单一个东西. 把DP值的定义改成去掉重儿子之后的DP值. 重链上的答案就用线段树/lct维护,维护子段/矩阵都可以.其实本质上差不多... 修改的时候在log个线段树上修改.轻儿子所在 ...
随机推荐
- 也来聊聊 HTTPS.
前言: 网上聊 HTTPS 的文章已经数都数不过来了吧,厚着脸皮,整理下读书笔记,结合平常项目的实践,也来聊聊 HTTPS. 一.为什么需要 HTTPS? 众所周知,HTTP 协议具有无连接.不可靠. ...
- 后渗透工具Empire使用教程
一.前言 Empire是一个PowerShell后期漏洞利用代理工具同时也是一款很强大的后渗透测神器,它建立在密码学.安全通信和灵活的架构之上.Empire实现了无需powershell.exe就可运 ...
- 在ASP.NET 中有哪些数据验证控件(请解释ASP.NET中以什么方式进行数据验证)?
(1)RequiredFieldValidator:检查用户是否输入: (2)CompareValidator:检查两个表单输入项的输入信息是否存在某种指定关系,比如大.等于等: (3)RangeVa ...
- ElasticSearch中倒排索引和正向索引
ElasticSearch搜索使用的是倒排索引,但是排序.聚合等不适合倒排索引使用的是正向索引 倒排索引 倒排索引表以字或词为关键字进行索引,表中关键字所对应的记录项记录了出现这个字或词的所有文档,每 ...
- Spring 面试详解
SpringSpring就像是整个项目中装配bean的大工厂,在配置文件中可以指定使用特定的参数去调用实体类的构造方法来实例化对象.Spring的核心思想是IoC(控制反转),即不再需要程序员去显式地 ...
- MySql索引要注意的8个事情
设计好MySql索引可以让你的数据库查询效率大为提高.设计MySql索引的时候,有一些问题需要值得我们注意的: 1,创建MySql索引 对于查询占主要的应用来说,索引显得尤为重要.很多时候性能问题很简 ...
- 入门大数据---Spark_Streaming基本操作
一.案例引入 这里先引入一个基本的案例来演示流的创建:获取指定端口上的数据并进行词频统计.项目依赖和代码实现如下: <dependency> <groupId>org.apac ...
- 报错Connection refused: connect
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_34266804/article/d ...
- 51单片机入门1--与C语言的交接
我们即将进入51单片机的编程学习,咱们今天就来讲解一下单片机中的C语言(你可以称作C51) 在说编程之前,要先说一些别的东西: 二进制,八进制,十六进制 二进制中只有数字0和1,在二进制中1+1为10 ...
- 致Spring Boot初学者
1.引言 Spring Boot是近两年来火的一塌糊涂,来这里的每一位同学,之前应该大致上学习了web项目开发方面的知识,正在努力成长过程中.因为最近有不少人来向我“请教”,他们大都是一些刚入门的新手 ...