Python 实现图像快速傅里叶变换和离散余弦变换
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的变换效果。
1. 傅里叶变换
实验原理
对一幅图像进行离散傅里叶变换(DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:

DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出快速傅里叶变换(FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\)。
FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:


其中,\(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT,\(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。
这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。
算法步骤
本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行执行一维 FFT,并保存为中间结果。
- 对上一步结果中的每一列执行一维 FFT,返回变换结果。
- 将零频分量移到频谱中心,并求绝对值进行可视化。
- 对中心化后的结果进行对数变换,以改善视觉效果。
主要代码
一维 FFT
def fft(x):
n = len(x)
if n == 2:
return [x[0] + x[1], x[0] - x[1]]
G = fft(x[::2])
H = fft(x[1::2])
W = np.exp(-2j * np.pi * np.arange(n//2) / n)
WH = W * H
X = np.concatenate([G + WH, G - WH])
return X
二维 FFT
def fft2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(img[i, :])
for j in range(w):
res[:, j] = fft(res[:, j])
return res
零频分量中心化
def fftshift(img):
# swap the first and third quadrants, and the second and fourth quadrants
h, w = img.shape
h_mid, w_mid = h//2, w//2
res = np.zeros([h, w], 'complex128')
res[:h_mid, :w_mid] = img[h_mid:, w_mid:]
res[:h_mid, w_mid:] = img[h_mid:, :w_mid]
res[h_mid:, :w_mid] = img[:h_mid, w_mid:]
res[h_mid:, w_mid:] = img[:h_mid, :w_mid]
return res
运行结果




2. 余弦变换
实验原理
当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。离散余弦变换(DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。
一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:

式中

由上式可见,\(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。
算法步骤
基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
- 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
- 对结果求绝对值,并进行对数变换,以改善视觉效果。
主要代码
二维 DCT
def dct2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(np.concatenate([img[i, :], np.zeros(w)]))[:w]
res[i, :] = np.real(res[i, :]) * np.sqrt(2 / w)
res[i, 0] /= np.sqrt(2)
for j in range(w):
res[:, j] = fft(np.concatenate([res[:, j], np.zeros(h)]))[:h]
res[:, j] = np.real(res[:, j]) * np.sqrt(2 / h)
res[0, j] /= np.sqrt(2)
return res
运行结果




完整源码请见 GitHub 仓库
Python 实现图像快速傅里叶变换和离散余弦变换的更多相关文章
- JPEG解码——(6)IDCT逆离散余弦变换
本篇是该系列的第六篇,承接上篇IZigZag变换,介绍接下来的一个步骤--逆离散余弦变换,即逆零偏置前的一个步骤. 该步骤比较偏理论,其业务是对IZigZag变换后的数据,再进一步的处理,使其恢复DC ...
- 在python3下使用OpenCV做离散余弦变换DCT及其反变换IDCT
对图像处理经常用到DCT, Python下有很多带有DCT算法包, 这里使用OpenCV的DCT做变换, 并简单置0部分数据, 再查看反变换图像的效果. import numpy as np impo ...
- 在python3下对数据分块(8x8大小)使用OpenCV的离散余弦变换DCT
在MATLAB中有blkproc (blockproc)对数据处理, 在python下没找到对应的Function, 这里利用numpy 的split(hsplit和vsplit) 对数据分块处理成8 ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- 傅里叶变换通俗解释及快速傅里叶变换的python实现
通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- python 图像的离散傅立叶变换
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有 ...
- 图像傅里叶变换(快速傅里叶变换FFT)
学习DIP第7天,图像傅里叶变换 转载请标明出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对 ...
- Discrete cosine transform(离散余弦转换)
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of co ...
随机推荐
- 我们是如何做go语言系统测试覆盖率收集的?
工程效能领域,测试覆盖率度量总是绕不开的话题,我们也不例外.在七牛云,我们主要使用go语言构建云服务,在考虑系统测试覆盖率时,最早也是通过围绕原生go test -c -cover的能力来构建.这个方 ...
- 题解 - 【NOI2015】维修数列
题面大意: 使用平衡树维护一个数列,支持插入,修改,删除,翻转,求和,求最大和这 \(6\) 个操作. 题意分析: Splay 裸题,几乎各种操作都有了,这个代码就发给大家当个模板吧. 最后求最大和的 ...
- Java是如何实现Future模式的?万字详解!
JDK1.8源码分析项目(中文注释)Github地址: https://github.com/yuanmabiji/jdk1.8-sourcecode-blogs 1 Future是什么? 先举个例子 ...
- 入门大数据---Spark简介
一.简介 Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目.相对于 MapRedu ...
- Digix2019华为算法精英挑战赛代码
Digix2019华为算法精英挑战赛代码 最终成绩: 决赛第九 问题 根据手机型号,颜色,用户偏好,手机APP等信息预测用户年龄. https://developer.huawei.com/consu ...
- caffe的python接口学习(2)生成solver文件
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_si ...
- dup与dup2函数
依赖的头文件 #include <unistd.h> 函数定义 int dup(int oldfd); int dup2(int oldfd, int newfd); 函数作用 dup和d ...
- Vue中$nextTick的理解
Vue中$nextTick的理解 Vue中$nextTick方法将回调延迟到下次DOM更新循环之后执行,也就是在下次DOM更新循环结束之后执行延迟回调,在修改数据之后立即使用这个方法,能够获取更新后的 ...
- 如何快速部署一条Simplechain子链
我们都知道Simplechain是一种主子链架构,主链Simplechain是POW共识算法的公链.那如何快速创建一条属于自己的子链呢?下面我们就是快速部署一条子链流程.首先clone 源码, 然后按 ...
- 洛谷 P3592 [POI2015]MYJ
题意 给定\(m\)个区间\([a_i,b_i]\)以及\(c_i\),对于一个含有\(n\)个元素的序列\(ans[]\),区间\(i\)对其的贡献为\(\min\{ans_i\}(i\in[a_i ...