Python 实现图像快速傅里叶变换和离散余弦变换
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的变换效果。
1. 傅里叶变换
实验原理
对一幅图像进行离散傅里叶变换(DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:
DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出快速傅里叶变换(FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\)。
FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:
其中,\(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT,\(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。
这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。
算法步骤
本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行执行一维 FFT,并保存为中间结果。
- 对上一步结果中的每一列执行一维 FFT,返回变换结果。
- 将零频分量移到频谱中心,并求绝对值进行可视化。
- 对中心化后的结果进行对数变换,以改善视觉效果。
主要代码
一维 FFT
def fft(x):
n = len(x)
if n == 2:
return [x[0] + x[1], x[0] - x[1]]
G = fft(x[::2])
H = fft(x[1::2])
W = np.exp(-2j * np.pi * np.arange(n//2) / n)
WH = W * H
X = np.concatenate([G + WH, G - WH])
return X
二维 FFT
def fft2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(img[i, :])
for j in range(w):
res[:, j] = fft(res[:, j])
return res
零频分量中心化
def fftshift(img):
# swap the first and third quadrants, and the second and fourth quadrants
h, w = img.shape
h_mid, w_mid = h//2, w//2
res = np.zeros([h, w], 'complex128')
res[:h_mid, :w_mid] = img[h_mid:, w_mid:]
res[:h_mid, w_mid:] = img[h_mid:, :w_mid]
res[h_mid:, :w_mid] = img[:h_mid, w_mid:]
res[h_mid:, w_mid:] = img[:h_mid, :w_mid]
return res
运行结果
2. 余弦变换
实验原理
当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。离散余弦变换(DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。
一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:
式中
由上式可见,\(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。
算法步骤
基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
- 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
- 对结果求绝对值,并进行对数变换,以改善视觉效果。
主要代码
二维 DCT
def dct2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(np.concatenate([img[i, :], np.zeros(w)]))[:w]
res[i, :] = np.real(res[i, :]) * np.sqrt(2 / w)
res[i, 0] /= np.sqrt(2)
for j in range(w):
res[:, j] = fft(np.concatenate([res[:, j], np.zeros(h)]))[:h]
res[:, j] = np.real(res[:, j]) * np.sqrt(2 / h)
res[0, j] /= np.sqrt(2)
return res
运行结果
完整源码请见 GitHub 仓库
Python 实现图像快速傅里叶变换和离散余弦变换的更多相关文章
- JPEG解码——(6)IDCT逆离散余弦变换
本篇是该系列的第六篇,承接上篇IZigZag变换,介绍接下来的一个步骤--逆离散余弦变换,即逆零偏置前的一个步骤. 该步骤比较偏理论,其业务是对IZigZag变换后的数据,再进一步的处理,使其恢复DC ...
- 在python3下使用OpenCV做离散余弦变换DCT及其反变换IDCT
对图像处理经常用到DCT, Python下有很多带有DCT算法包, 这里使用OpenCV的DCT做变换, 并简单置0部分数据, 再查看反变换图像的效果. import numpy as np impo ...
- 在python3下对数据分块(8x8大小)使用OpenCV的离散余弦变换DCT
在MATLAB中有blkproc (blockproc)对数据处理, 在python下没找到对应的Function, 这里利用numpy 的split(hsplit和vsplit) 对数据分块处理成8 ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- 傅里叶变换通俗解释及快速傅里叶变换的python实现
通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- python 图像的离散傅立叶变换
图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有 ...
- 图像傅里叶变换(快速傅里叶变换FFT)
学习DIP第7天,图像傅里叶变换 转载请标明出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对 ...
- Discrete cosine transform(离散余弦转换)
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of co ...
随机推荐
- 终于搞明白Unicode,ASCII,UTF8,UCS2编码是啥了
[本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 前言 本文起因于 ...
- 你想不到的沙雕,10行代码Python实现GIF图倒放,每天的快乐源泉
前言 GIF图现在已经融入了我们的日常网络生活,微信群.QQ群.朋友圈......一言不合就斗图,你怕了吗?不用担心,只要学会了Python之GIF倒放技能,你就是“斗图王”. 咱们直接开始本文的内容 ...
- 吃货联盟订餐系统 源代码 Java初级小项目
咳咳,今天博主给大家写一个小的项目:吃货联盟订餐系统.博主不是大神(互联网架构师的路上ing),也是小白一个,不过是刚入门的小白^_^.项目功能也很简单:只是模拟日常的订餐流程呦,所以有错误以及功能不 ...
- java scoket Blocking 阻塞IO socket通信一
package bhz.bio; import java.io.IOException; import java.net.ServerSocket; import java.net.Socket; p ...
- 数据库char varchar nchar nvarchar,编码Unicode,UTF8,GBK等,Sql语句中文前为什么加N(一次线上数据存储乱码排查)
背景 公司有一个数据处理线,上面的数据经过不同环境处理,然后上线到正式库.其中一个环节需要将数据进行处理然后导入到另外一个库(Sql Server).这个处理的程序是老大用python写的,处理完后进 ...
- Python实用笔记 (6)函数
绝对值 >>> abs(100) 100 >>> abs(-20) 20 max()可以接收任意多个参数,并返回最大的那个: >>> max(1, ...
- MFC 添加C++类,别的类不通过C++类的定义的对象就可以直接调用C++类里面的成员函数;
MFC 添加C++类,不用定义C++类的对象,别的类不通过C++类的定义的对象就可以直接调用C++类里面的成员函数: 1先在mfc程序中添加普通类CProdata,然后删除头文件Prodata.h里面 ...
- 超简单集成HMS Scan Kit扫码SDK,轻松实现扫码购
前言 在前面的文章中,我们向大家介绍了HMS Scan Kit 的快速集成方法以及HMS Scan Kit和其他开源扫码工具的竞争力对比分析,如果没有看到也没关系,文章下方的往期链接中有文章入口. ...
- Python进阶之浅谈内置方法
目录 有序or无序和可变or不可变 数字类型内置方法 整形 浮点型 字符串类型内置方法 有序or无序和可变or不可变 有序:有索引 无序:无索引 可变:变量值变,id不变 不可变:变量值变,id也变 ...
- js/ts/tsx读取excel表格中的日期格式转换
const formatDate = (timestamp: number) => { const time = new Date((timestamp - 1) * 24 * 3600000 ...