图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了二维离散傅里叶变换二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的变换效果。

1. 傅里叶变换

实验原理

对一幅图像进行离散傅里叶变换(DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:

DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出快速傅里叶变换(FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\)。

FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:


其中,\(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT,\(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。

这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。

算法步骤

本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。

算法步骤如下:

  1. 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
  2. 对图像的灰度值进行归一化。
  3. 对图像的每一行执行一维 FFT,并保存为中间结果。
  4. 对上一步结果中的每一列执行一维 FFT,返回变换结果。
  5. 将零频分量移到频谱中心,并求绝对值进行可视化。
  6. 对中心化后的结果进行对数变换,以改善视觉效果。

主要代码

一维 FFT

def fft(x):
n = len(x)
if n == 2:
return [x[0] + x[1], x[0] - x[1]] G = fft(x[::2])
H = fft(x[1::2])
W = np.exp(-2j * np.pi * np.arange(n//2) / n)
WH = W * H
X = np.concatenate([G + WH, G - WH])
return X

二维 FFT

def fft2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(img[i, :])
for j in range(w):
res[:, j] = fft(res[:, j])
return res

零频分量中心化

def fftshift(img):
# swap the first and third quadrants, and the second and fourth quadrants
h, w = img.shape
h_mid, w_mid = h//2, w//2
res = np.zeros([h, w], 'complex128')
res[:h_mid, :w_mid] = img[h_mid:, w_mid:]
res[:h_mid, w_mid:] = img[h_mid:, :w_mid]
res[h_mid:, :w_mid] = img[:h_mid, w_mid:]
res[h_mid:, w_mid:] = img[:h_mid, :w_mid]
return res

运行结果

2. 余弦变换

实验原理

当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。离散余弦变换(DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。

一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:

式中

由上式可见,\(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。

算法步骤

基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。

算法步骤如下:

  1. 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
  2. 对图像的灰度值进行归一化。
  3. 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
  4. 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
  5. 对结果求绝对值,并进行对数变换,以改善视觉效果。

主要代码

二维 DCT

def dct2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(np.concatenate([img[i, :], np.zeros(w)]))[:w]
res[i, :] = np.real(res[i, :]) * np.sqrt(2 / w)
res[i, 0] /= np.sqrt(2)
for j in range(w):
res[:, j] = fft(np.concatenate([res[:, j], np.zeros(h)]))[:h]
res[:, j] = np.real(res[:, j]) * np.sqrt(2 / h)
res[0, j] /= np.sqrt(2)
return res

运行结果

完整源码请见 GitHub 仓库

Python 实现图像快速傅里叶变换和离散余弦变换的更多相关文章

  1. JPEG解码——(6)IDCT逆离散余弦变换

    本篇是该系列的第六篇,承接上篇IZigZag变换,介绍接下来的一个步骤--逆离散余弦变换,即逆零偏置前的一个步骤. 该步骤比较偏理论,其业务是对IZigZag变换后的数据,再进一步的处理,使其恢复DC ...

  2. 在python3下使用OpenCV做离散余弦变换DCT及其反变换IDCT

    对图像处理经常用到DCT, Python下有很多带有DCT算法包, 这里使用OpenCV的DCT做变换, 并简单置0部分数据, 再查看反变换图像的效果. import numpy as np impo ...

  3. 在python3下对数据分块(8x8大小)使用OpenCV的离散余弦变换DCT

    在MATLAB中有blkproc (blockproc)对数据处理, 在python下没找到对应的Function, 这里利用numpy 的split(hsplit和vsplit) 对数据分块处理成8 ...

  4. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

  5. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

  6. 基于python的快速傅里叶变换FFT(二)

    基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点  FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...

  7. python 图像的离散傅立叶变换

    图像(MxN)的二维离散傅立叶变换可以将图像由空间域变换到频域中去,空间域中用x,y来表示空间坐标,频域由u,v来表示频率,二维离散傅立叶变换的公式如下: 在python中,numpy库的fft模块有 ...

  8. 图像傅里叶变换(快速傅里叶变换FFT)

    学习DIP第7天,图像傅里叶变换 转载请标明出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对 ...

  9. Discrete cosine transform(离散余弦转换)

    A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of co ...

随机推荐

  1. 我们是如何做go语言系统测试覆盖率收集的?

    工程效能领域,测试覆盖率度量总是绕不开的话题,我们也不例外.在七牛云,我们主要使用go语言构建云服务,在考虑系统测试覆盖率时,最早也是通过围绕原生go test -c -cover的能力来构建.这个方 ...

  2. 题解 - 【NOI2015】维修数列

    题面大意: 使用平衡树维护一个数列,支持插入,修改,删除,翻转,求和,求最大和这 \(6\) 个操作. 题意分析: Splay 裸题,几乎各种操作都有了,这个代码就发给大家当个模板吧. 最后求最大和的 ...

  3. Java是如何实现Future模式的?万字详解!

    JDK1.8源码分析项目(中文注释)Github地址: https://github.com/yuanmabiji/jdk1.8-sourcecode-blogs 1 Future是什么? 先举个例子 ...

  4. 入门大数据---Spark简介

    一.简介 Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目.相对于 MapRedu ...

  5. Digix2019华为算法精英挑战赛代码

    Digix2019华为算法精英挑战赛代码 最终成绩: 决赛第九 问题 根据手机型号,颜色,用户偏好,手机APP等信息预测用户年龄. https://developer.huawei.com/consu ...

  6. caffe的python接口学习(2)生成solver文件

    caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_si ...

  7. dup与dup2函数

    依赖的头文件 #include <unistd.h> 函数定义 int dup(int oldfd); int dup2(int oldfd, int newfd); 函数作用 dup和d ...

  8. Vue中$nextTick的理解

    Vue中$nextTick的理解 Vue中$nextTick方法将回调延迟到下次DOM更新循环之后执行,也就是在下次DOM更新循环结束之后执行延迟回调,在修改数据之后立即使用这个方法,能够获取更新后的 ...

  9. 如何快速部署一条Simplechain子链

    我们都知道Simplechain是一种主子链架构,主链Simplechain是POW共识算法的公链.那如何快速创建一条属于自己的子链呢?下面我们就是快速部署一条子链流程.首先clone 源码, 然后按 ...

  10. 洛谷 P3592 [POI2015]MYJ

    题意 给定\(m\)个区间\([a_i,b_i]\)以及\(c_i\),对于一个含有\(n\)个元素的序列\(ans[]\),区间\(i\)对其的贡献为\(\min\{ans_i\}(i\in[a_i ...